• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Membranes for capturing carbon dioxide from the air

Bioengineer by Bioengineer
October 16, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers in I2CNER, Kyushu University suggest the potential of the advanced gas separation membranes for CO2 extraction from ambient air

IMAGE

Credit: Kyushu University

Climate change caused by emissions of greenhouse gases into the atmosphere is a most important issue for our society. Acceleration of global warming results in catastrophic heatwaves, wildfires, storms and flooding. The anthropogenic nature of climate change necessitates development of novel technological solutions in order to reverse the current CO2 trajectory.

Direct capture of the carbon dioxide (CO2) from the air (direct air capture, DAC) is one among a variety of negative emission technologies that are expected to keep global warming below 1.5 °C, as recommended by the Intergovernmental Panel for Climate Change (IPCC). Extensive deployment of the DAC technologies is needed to mitigate and remove so-called legacy carbon or historical emissions. Effective reduction of the CO2 content in the atmosphere would be achieved only by extracting huge amounts of CO2 that are comparable to that of the current global emissions. Current DAC technologies are mainly based on sorbent-based systems where CO2 is trapped in the solution or on the surface of the porous solids covered with the compounds with high CO2 affinity. These processes are currently rather expensive, although the cost is expected to go down as the technologies developed and deployed at scale.

The ability of membranes to separate carbon dioxide is well documented and its usefulness is established for industrial processes. Unfortunately, its efficiency is less than satisfactory for the practical operation of the DAC.

In a recent paper, researchers from International Institute for Carbo-Neutral Energy Research (I2CNER), Kyushu University and NanoMembrane Technologies Inc. in Japan discussed the potential of membrane-based DAC (m-DAC), by taking advantage of the state-of-the-art performance of organic polymer membranes. Based on the process simulation, they showed the targeted performance for the m-DAC is achievable with competitive energy expenses. It is shown that a mult-stage application separation process can enable the preconcentration of air CO2 (0.04%) to 40%. This possibility and combination of the membranes with advanced CO2 conversion may lead to realistic means for opening circular CO2 economy.
`Based on this finding, Kyushu University team has initiated a Government-supported Moonshot Research and Development Program (Program Manager: Dr. Shigenori Fujikawa). In this program, direct CO2 capture from the atmosphere by membranes and the subsequent conversiont to valuable materials is the major development target.

###

For more information about this research, see “A New Strategy of Membrane-Based Direct Air Capture” Shigenori Fujikawa, Roman Selyanchyn, and Toyoki Kunitake, Polymer Journal (2020), https://doi.org/10.1038/s41428-020-00429-z

Media Contact
Tomoya Koga
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41428-020-00429-z

Tags: Chemistry/Physics/Materials SciencesClimate ChangeIndustrial Engineering/ChemistryPolymer Chemistry
Share13Tweet8Share2ShareShareShare2

Related Posts

Carving Innovation: Novel Method Crafts Advanced Materials from Simple Plastics

Carving Innovation: Novel Method Crafts Advanced Materials from Simple Plastics

November 4, 2025
blank

Parkinson’s Mouse Model Reveals How Noise Impairs Movement

November 4, 2025

Innovative Smart Hydrogel Emulates Skin Repair, Accelerating Healing of Diabetic Wounds

November 4, 2025

Chemoenzymatic Synthesis of Lariat Lipopeptides Revolutionized

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Carving Innovation: Novel Method Crafts Advanced Materials from Simple Plastics

Revolutionary Knitting Machine Constructs Solid 3D Objects

Integrating Universal Screening and School-Based Mental Health Initiatives into Classroom Settings

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.