• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, December 4, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Mechanism used by metastatic cancer cells to infiltrate the liver found

Bioengineer by Bioengineer
October 4, 2022
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Approximately 90% of cancer-related deaths are due to metastasis when cancer spreads and forms new tumors. The liver is considered the most vulnerable organ to metastatic cancer: the 5-year survival rate after surgery to remove liver metastases is as low as 30-50%, so developing treatments to prevent liver metastasis is urgently needed.

Cancer cell infiltrates the liver through intracellular gaps in LSECs

Credit: Matsubara, Osaka Metropolitan University

Approximately 90% of cancer-related deaths are due to metastasis when cancer spreads and forms new tumors. The liver is considered the most vulnerable organ to metastatic cancer: the 5-year survival rate after surgery to remove liver metastases is as low as 30-50%, so developing treatments to prevent liver metastasis is urgently needed.

A group of researchers including graduate student Truong Huu Hoang and Professor Norifumi Kadawa from the Osaka Metropolitan University Graduate School of Medicine, and Associate Professor Misako Matsubara from the Graduate School of Veterinary Science, has identified an alternative pathway for liver metastasis, showing that cancer cells invade via intracellular gap formation in endothelial cells, and clarified the molecular mechanism involved. The results of their research are expected to lead to the development of drugs to prevent and treat metastatic liver cancer.

Metastasizing cancer cells are known to change the microenvironment of liver cells in ways that promote metastasis, but the extent of these interactions has not been fully investigated. Cancer cells carried in the bloodstream come into contact with liver sinusoidal endothelial cells (LSECs), which line the blood vessels of the liver to form a protective barrier. LSECs are responsible for the detoxification functions of the liver and have numerous small pores, through which the liquid components of blood and small particles—but not cancer cells—can enter the liver. LSECs are constantly exposed to toxic substances carried by the blood that can disrupt these small pores under stressful conditions; this causes larger intracellular gaps to form in the LSECs, weakening the protective barrier. This led the research group to consider that the LSECs’ intracellular gaps may be involved in liver metastasis.

The research group created a mouse model of liver metastasis—by injecting cancer cells into the spleen—and performed omics analysis to observe changes in the LSECs. They found that when cancer cells moved from the spleen to the liver, they induced the LSECs to produce multiple proteins. The expression of one of these proteins—matrix metalloproteinase 9 (MMP9)—in LSECs caused the intracellular gaps to form.

Furthermore, using electron microscopy and 3D tomography reconstruction, the researchers showed that cancer cells extended their projections directly into the intracellular gaps of LSECs, allowing them to infiltrate the liver tissue. They found a positive correlation between the number of intracellular gaps in the LSECs and the number of new metastatic liver tumors that formed in the mice. However, new tumors could be prevented from forming by treating the mice with a MMP9 inhibitor, suggesting that MMP9 is a promising therapeutic target to prevent liver metastasis.

Professor Matsubara concluded, “In this study, we discovered a new phenomenon related to metastasis: cancer cells induce LSEC intracellular gap formation and infiltrate the liver through those gaps. With these results we are continuing our research to develop new treatments for liver metastasis, targeting intracellular gap formation in LSECs.”

The results of this research were published online in Science Advances on September 28, 2022.

###

About OMU
Osaka Metropolitan University is a new public university established in April 2022, formed by merger between Osaka City University and Osaka Prefecture University. For more research news visit https://www.upc-osaka.ac.jp/new-univ/en-research/research/ or follow @OsakaMetUniv_en and #OMUScience.



Journal

Science Advances

DOI

10.1126/sciadv.abo5525

Method of Research

Experimental study

Subject of Research

People

Article Title

Cancer cells produce liver metastasis via gap formation in sinusoidal endothelial cells through pro-inflammatory paracrine mechanisms

Article Publication Date

28-Sep-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Mutated protein associated to recycling regulation

Leukemia cells activate cellular recycling program

December 4, 2023
Highly aggressive cell carcinomas

Mathematics supporting fresh theoretical approach in oncology

December 4, 2023

Training the immune system to prevent cancer – NextGen researchers discover paradigm-shifting approach

December 4, 2023

Immunotherapy added to first-line standard therapy significantly improves survival in metastatic or recurrent cervical cancer

December 4, 2023

POPULAR NEWS

  • Figure 1

    Understanding rapid tendon regeneration in newts may one day help human athletes

    85 shares
    Share 34 Tweet 21
  • Study finds increasingly popular oral nicotine pouches do little to curb smokers’ cravings

    35 shares
    Share 14 Tweet 9
  • SMART researchers pioneer novel microfluidic method to optimise bone marrow stem cell extraction for advanced cell therapies

    34 shares
    Share 14 Tweet 9
  • UMass Amherst receives $2.5 million from Howard Hughes Medical Institute to reshape STEM education

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Leukemia cells activate cellular recycling program

Mathematics supporting fresh theoretical approach in oncology

Georgia State professor granted $5 million to identify and characterize objects in space

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 58 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In