• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Mass gatherings during Malaysian election directly and indirectly boosted COVID-19 spread

Bioengineer by Bioengineer
May 27, 2021
in Immunology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New computational method could deepen understanding of direct and spill-over effects of gatherings

IMAGE

Credit: Lim JT et al., 2021, PLOS Computational Biology

New estimates suggest that mass gatherings during an election in the Malaysian state of Sabah directly caused 70 percent of COVID-19 cases detected in Sabah after the election, and indirectly caused 64.4 percent of cases elsewhere in Malaysia. Jue Tao Lim of the National University of Singapore, Kenwin Maung of the University of Rochester, New York, and colleagues present these findings in the open-access journal PLOS Computational Biology.

Mass gatherings of people pose high risks of spreading COVID-19. However, it is difficult to accurately estimate the direct and indirect effects of such events on increased case counts.

To address this difficulty, Lim, Maung, and colleagues developed a new computational method for estimating both direct and spill-over effects of mass gatherings. Departing from traditional epidemiological approaches, they employed a statistical strategy known as a synthetic control method, which enabled comparison between the aftermath of mass gatherings and what might have happened if the gatherings had not occurred.

The researchers then applied this method to the Sabah state election. This election involved mandated in-person voting and political rallies, both of which resulted in a significant increase in inter-state travel and in-person gatherings by voters, politicians, and campaign workers. Prior to the election, Malaysia had experienced an average of about 16 newly diagnosed COVID-19 cases per day for nearly four months. After the election, that number jumped to 190 cases per day for 17 days until lockdown policies were reinstated.

Using their novel method, the researchers estimated that mass gatherings during the election directly caused 70 percent of COVID-19 cases in Sabah during the 17 days after the election, amounting to a total of 2,979 cases. Meanwhile, 64.4 percent of post-election cases elsewhere in Malaysia–1,741 cases total–were indirectly attributed to the election.

“Our work underscores the serious risk that mass gatherings in a single region could spill over into other regions and cause a national-scale outbreak,” Lim says.

Lim and colleagues say that the same synthetic control framework could be applied to death rates and genetic data to deepen understanding of the impact of the Sabah election.

###

Peer-reviewed; Simulation / modelling

In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology:
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008959

Citation: Lim JT, Maung K, Tan ST, Ong SE, Lim JM, Koo JR, et al. (2021) Estimating direct and spill-over impacts of political elections on COVID-19 transmission using synthetic control methods. PLoS Comput Biol 17(5): e1008959. https://doi.org/10.1371/journal.pcbi.1008959

Funding: ARC is supported by the National Medical Research Council through the Singapore Population Health Improvement Centre Grant NMRC/CG/C026/2017 NUHS and COVID19RF-004. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Media Contact
PLOS Computational Biology
[email protected]

Related Journal Article

http://dx.doi.org/10.1371/journal.pcbi.1008959

Tags: EpidemiologyInfectious/Emerging DiseasesMathematics/StatisticsMedicine/HealthPublic HealthSystems/Chaos/Pattern Formation/Complexity
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    44 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Saliva Exosome Proteins and Lipids Diagnose Esophageal Cancer

Feasibility of Range-Compensated Proton Arc Therapy

Fermentable Carbs and Metformin Boost Prediabetes Control

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.