• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Mason scientists invent new technology to streamline drug discovery

Bioengineer by Bioengineer
October 7, 2019
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by Evan Cantwell


Manassas, Va. – George Mason University researchers have discovered the exact location where two proteins responsible for hiding cancer cells from the immune system bind. This discovery provides a novel approach to developing new cancer immunotherapy medicines that can be administered as a pill, compared to existing intravenous therapeutics. The findings were published in July 2019 in the Journal of Biological Chemistry.

According to Amanda Haymond, lead author on the study and researcher in the Center for Applied Proteomics and Molecular Medicine and Institute for Biohealth Innovation, the discovery was made possible by an in-house developed protein-painting technology, funded by the National Cancer Institute’s Innovative Molecular Analysis Technology (IMAT) program.

“The goal of IMAT is to support the creation of novel technologies that enable scientists to make transformative discoveries in cancer research that were not possible before,” Tony Dickherber, director of the IMAT program, said.

The protein painting technology, developed under National Institutes of Health funding, is indeed transformative. The process starts with two or more proteins that when bound together, drive disease. The scientists use small molecule dyes to paint the bound proteins, and then a chemical reaction known as denaturation chops them up. The final step is when scientists use a mass spectrometer to identify the unpainted regions, which is where the proteins touch.

Current technologies in early phase drug discovery, such as crystallography, are often complicated, costly, and time-consuming. The protein painting technology specifically identifies protein-protein touchpoints, highlighting an ideal location and recipe to follow for drug development. The recipe, along with the fact that the technology allows for rapid performance testing of the drug, means that results can be produced in several days, rather than years.

To build on this success, the Mason team needed to push more boundaries. In the new article, the team describes how they enhanced their technology, reporting the development and optimization of a novel protein dye that has been successfully tested on clinically relevant protein complexes, PD-1 and PD-L1. The publication also unveils new findings that chemically decipher the way that dyes interact with proteins, which has been a mystery to scientist for decades.

“The secret to using the protein-painting technique is having the perfect dye molecule with just the right structure to bind tightly onto proteins,” Haymond said.

Monet Pharmaceuticals, a newly formed pharmaceutical company based in Prince William County, Virginia, has partnered with the Mason team to exclusively license patents owned by the university broadly covering the protein-painting technology.

“We have many talented faculty at Mason who create groundbreaking technologies, but it takes partnerships to maximize impact. In this case, the impact is accelerating the drug discovery paradigm,” Lance Liotta, co-director of the Center for Applied Proteomics and Molecular Medicine, said.

While the impressive technology has the potential to transform the drug discovery process, it is grounded by humble beginnings.

“It started with a simple idea that we were able to test in the lab. This is a prime example of why we should always ignore the impeding thoughts that someone must have thought of this already, or that an experiment would never work. Some of the simplest ideas can lead to the biggest discoveries,” Haymond said.

###

About George Mason University

George Mason University is Virginia’s largest public research university. Located near Washington, D.C., Mason enrolls 37,000 students from 130 countries and all 50 states. Mason has grown rapidly over the last half-century and is recognized for its innovation and entrepreneurship, remarkable diversity, and commitment to accessibility. Learn more at http://www.gmu.edu.

About the Institute for Biohealth Innovation

The Institute for Biohealth Innovation (IBI) promotes and supports biohealth-related research activities of faculty, staff, and students at George Mason University. The IBI connects Mason researchers in biohealth with potential collaborators, both within the university and externally, to advance human health research. Learn more and hear more from our researchers in a newly released video at https://ibi.gmu.edu/what-is-the-ibi/.

About Monet Pharmaceuticals

Monet Pharmaceuticals is a newly formed pharmaceutical company based in Prince William County, Virginia that has exclusively licensed patents owned by the university covering the protein-painting technology. Monet is collaborating with George Mason University researchers on high value therapeutic targets utilizing the protein-painting technology. Together, they are discovering and developing novel therapeutics.

Media Contact
John Hollis
[email protected]
703-993-8781

Related Journal Article

http://dx.doi.org/10.1074/jbc.RA118.007310

Tags: BiochemistryBiologyBiomedical/Environmental/Chemical EngineeringBiotechnologycancerChemistry/Physics/Materials SciencesGraduate/Postgraduate EducationMedicine/HealthPharmaceutical SciencePharmaceutical Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Nano- and Micro-Polystyrene Impact Gut Cells, Neurons

Nano- and Micro-Polystyrene Impact Gut Cells, Neurons

August 3, 2025
Adolescents Face Cancer’s Impact on Identity, Sexuality

Adolescents Face Cancer’s Impact on Identity, Sexuality

August 3, 2025

Critical 70% CO2 Threshold for Viable Geological Storage

August 3, 2025

Tracing Tire Particles in Swiss Road Soils

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    51 shares
    Share 20 Tweet 13
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nano- and Micro-Polystyrene Impact Gut Cells, Neurons

Adolescents Face Cancer’s Impact on Identity, Sexuality

Critical 70% CO2 Threshold for Viable Geological Storage

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.