• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Marcus regime in organic devices: Interfacial charge transfer mechanism verified

Bioengineer by Bioengineer
May 9, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Frank Ortmann

Charge transfer processes play a fundamental role in all electronic and optoelectronic devices. For devices based on organic thin-film technology, these include the injection of the charge carriers via the metallic contacts and the charge transport in the organic film itself. Injection processes at the contacts are of particular interest here because the contact resistances at the interfaces must be minimized for optimum device efficiency. However, such internal interfaces are difficult to access and therefore not yet understood very well.

The team of cfaed research group leader Frank Ortmann (Computational Nanoelectronics Group), together with researchers from Spain, Belgium and Germany, has now shown in a study that the electronic transport mechanism when injected into an organic film can be described by the so-called Marcus hopping model known from physical chemistry. The model was developed by the American chemist Rudolph Arthur Marcus. Comparative theoretical and experimental investigations unequivocally identified the transport regimes predicted in the Marcus theory. “The predictions derived by R.A. Marcus in the context of chemical synthesis in the 1950s, in particular the so-called ‘inverted Marcus regime’, could only be confirmed many decades later by systematic experiments on chemical reactions. For his important theoretical contributions, R.A. Marcus received the Nobel Prize for Chemistry in 1992 “, says Ortmann.

“Now, the observation of the ‘Inverted Marcus Region’, in which a higher voltage generates a lower current, succeeded for the first time in an organic transistor, in which the injection voltage can be actively controlled”, Ortmann continues. This leads to a better understanding of electronic and optoelectronic organic devices in general. The publication has been published on 7th May, 2019 in the journal “Nature Communications“.

###

About the Computational Nanoelectronics Group

The research group at the Center for Advancing Electronics Dresden (cfaed) headed by Dr. Frank Ortmann investigates electronic properties and charge transport properties of novel semiconductor materials. Here, organic semiconductors are currently an important focus of the work, which is funded by the German Research Foundation under the Emmy Noether Program. The group has been based at the cfaed since 2017. Info: https://cfaed.tu-dresden.de/ortmann-home

Media inquiries:

Matthias Hahndorf

Center for Advancing Electronics Dresden, TU Dresden

Head of Communications

Tel.: +49 351 463-42847

Email: [email protected]

Media Contact
Dr. Frank Ortmann
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-10114-2

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/Micromachines
Share13Tweet8Share2ShareShareShare2

Related Posts

Dual Dynamic Helical Poly(disulfide)s: Adaptive, Recyclable Polymers

Dual Dynamic Helical Poly(disulfide)s: Adaptive, Recyclable Polymers

October 1, 2025
Atom-photon entanglement breakthrough opens new horizons for future quantum networks

Atom-photon entanglement breakthrough opens new horizons for future quantum networks

September 30, 2025

Charting the Cosmos Made Simpler

September 30, 2025

Scientists Discover Room-Temperature Method to Enhance Light-Harvesting and Emission Devices

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    62 shares
    Share 25 Tweet 16
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Research Reveals Connection Between Shift Work and Increased Kidney Stone Risk, Highlighting Lifestyle Influences

New Scientific Findings Reveal How Pianists Manipulate Timbre Through Touch

Genetic Testing Identifies Individuals at Risk for Invasive Breast Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 59 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.