• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 16, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Mapping out a transient atom

Bioengineer by Bioengineer
December 22, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new experiment provides better understanding of fundamental photo-induced processes with special importance for photocatalysis, photosynthesis and radiation damage

IMAGE

Credit: European XFEL

An international team from Germany, Sweden, Russia and the USA, led by scientists from European XFEL, has published the results of an experiment that could provide a blueprint for the analysis of transitions states in atoms and molecules. This would open up new opportunities to gain insights into important processes such as photocatalysis, elementary steps in photosynthesis and radiation damage.

It was the very first user experiment carried out at European XFEL’s Small Quantum System (SQS) instrument. The scientists used high-resolution electron spectroscopy to capture a snapshot of the short-lived transient state produced when X-rays punch a hole in the very core of the atomic electron cloud. The results of the study, which was carried out on neon atoms, are the starting point for the analysis of transient states and have been published in Physical Review X.

The extremely short-lived transient state of core-exited neon lasts for just 2.4 femtoseconds. To put a femtosecond in context: a femtosecond is to a second as a second is to about 31.71 million years. “The European XFEL allows us to use a high number of laser pulses per second and high pulse energy. This means we can bring a very high number of photons to the sample, which is crucial to probe such transient atomic states,” explains Tommaso Mazza, the lead author of the paper.

“We used intense X-ray pulses to first remove the electrons from the inner shell, or core, of a neon atom and then used a second photon from the same X-ray pulse to map out the ‘hollow’ atom,” says Mazza. “This is the first time scientists are able to obtain information of the electronic structure of this core-hole transient state by X-ray induced electron spectroscopy, and, more precisely, by measuring the energy of the electrons emitted after the excitation by the second photon while smoothly changing the wavelength of the X-ray pulses,” he adds.

Leading Scientist at SQS Michael Meyer underlines that the results of this paper along with a paper recently published in Science show the outstanding possibility to efficiently control and probe excitations of specific electronic subshells at the SQS instrument. “We can enable atomic or element specific excitations in molecular targets and independently investigate for each atom the influence on the photon-induced molecular dynamics,” he says. Targeting a specific atom in a molecule allows scientists to gain deeper understanding of the behavior of individual building blocks in the molecular assembly under intense irradiation.

The European XFEL in the Hamburg area is a large international X-ray laser facility. Its 27,000 X-ray flashes per second and their high brilliance open up completely new opportunities for science. Research groups from around the world are able to map the atomic details of viruses, decipher the molecular composition of cells, take three-dimensional “photos” of the nanoworld, “film” chemical reactions, and study processes such as those occurring deep inside planets.

###

Media Contact
Bernd Ebeling
 @europeanxfel

49-408-998-6921

Original Source

https://www.xfel.eu/news_and_events/news/index_eng.html?openDirectAnchor=1844&two_columns=0

Related Journal Article

http://dx.doi.org/10.1103/PhysRevX.10.041056

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMolecular Physics
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Better diet and glucose uptake in the brain lead to longer life in fruit flies

January 16, 2021
IMAGE

Howard University professor to receive first Joseph A. Johnson Award

January 15, 2021

Nanodiamonds feel the heat

January 15, 2021

Controlling chemical catalysts with sculpted light

January 15, 2021
Next Post
IMAGE

Salk Assistant Professor Dmitry Lyumkis receives CAREER award from NSF

IMAGE

Hand-held device measures aerosols for coronavirus risk assessment

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    38 shares
    Share 15 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangeChemistry/Physics/Materials SciencesBiologyInfectious/Emerging DiseasesTechnology/Engineering/Computer ScienceMedicine/HealthEcology/EnvironmentMaterialsGeneticscancerPublic HealthCell Biology

Recent Posts

  • Better diet and glucose uptake in the brain lead to longer life in fruit flies
  • Rapid blood test identifies COVID-19 patients at high risk of severe disease
  • Conductive nature in crystal structures revealed at magnification of 10 million times
  • Howard University professor to receive first Joseph A. Johnson Award
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In