• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 5, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Manipulating cells’ shapes could treat breast cancer

Bioengineer by Bioengineer
March 4, 2015
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Changing the shape of breast cancer cells could make the disease more sensitive to treatments – even driving the body’s own inflammatory response against a tumour – a new study shows.

Scientists at The Institute of Cancer Research, London, showed that the shape of a tumour cell is an important factor in determining its response to inflammatory molecules, which can either promote or inhibit cancer progression.

The research used robotic microscopy and automated algorithms, similar to those used by Facebook for facial recognition, to measure the shape of hundreds of thousands of different breast cancer cells.

The study, published today (Wednesday) in Molecular Systems Biology, was funded by Cancer Research UK, the Biotechnology and Biological Sciences Research Council and the Wellcome Trust.

The researchers were looking for a connection between cell shape and the activity of a key cancer protein, called NF-kappaB, which is switched on in response to inflammation and sends out pro-survival signals in cancer cells.

They measured a total of 77 shape and ‘context’ features – such as how close a cell was to its neighbours – in more than 307,000 cells. Features of shape they analysed included roundness, their length divided by their width, and measures of protrusions and ‘ruffliness’.

breast cancer

They discovered that they could divide the cells into two main groups, based on levels of NF-kappaB in their nuclei. ‘Mesenchymal-like’ cancer cells – which tended to be larger and more ‘ruffly’, with multiple sharp protrusions – had higher levels of NF-kappaB in their nuclei than ‘epithelial-like’ cells, which tend to be rounder and softer-edged.

Crucially, the study also showed that an inflammatory signal called TNFalpha strongly activated the NF-kappaB survival signal in mesenchymal-like cells, but only weakly did so in epithelial-like cells. Through detailed mathematical analysis, the researchers showed that cell shape influenced the flow of NF-kappaB into and out of cell nuclei in response to TNFalpha.

Study leader Dr Chris Bakal, Team Leader in Dynamic Cell Systems at The Institute of Cancer Research, London, said:

“Our study shows the crucial importance of a breast cancer cell’s shape in how it responds to inflammation – with certain shapes more likely to respond to the body’s immune system by activating pro-survival signals.

Changing cell shape – through mechanical, chemical or genetic means – could be a new way of assisting the body’s own inflammatory response to fight cancer.

“Interest in using the body’s own inflammatory response to fight cancer has been reinvigorated recently because of the promising results of immunotherapy. Our study further supports the need to explore the role of inflammation and cancer, in order to enhance treatments and the body’s own ability to eliminate cancer cells.”

Professor Paul Workman, Chief Executive of The Institute of Cancer Research, London, said:

“Cancer cells are in a battle against the body’s natural failsafe mechanisms that seek out and destroy them. This study underlines the importance of a cancer cell’s shape in helping to tip the balance in its favour, not only dodging an immune reaction but actually thriving in response to it. It also shows that manipulating cell shape could help tip the balance back against a tumour.”

Dr Alan Worsley, Cancer Research UK’s senior science information officer, said:

“This research shows how the shape of a cell and its environment may have a big effect on how that cell receives signals to grow and survive. These results highlight differences between how cancer cells behave in a petri dish compared with in a person, and we need to understand these differences when researching new treatments.”

Story Source:

The above story is based on materials provided by The Institute of Cancer Research.

Share12Tweet8Share2ShareShareShare2

Related Posts

World Cancer Day

Health Equity Report Card pilot project to help close the care gap highlighted on World Cancer Day

February 4, 2023
Brooke Emerling, Ph.D.

New treatment approach for prostate cancer could stop resistance in its tracks

February 3, 2023

MD Anderson announces new collaboration in Indonesia to reduce global cancer burden

February 3, 2023

Genes & Cancer | Leveraging allogeneic dendritic cells for neoantigen cancer vaccines

February 3, 2023
Please login to join discussion

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Health Equity Report Card pilot project to help close the care gap highlighted on World Cancer Day

Tech that turns household surfaces into touch sensors is a touch closer to application

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In