• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Malaria parasite lives on the edge

Bioengineer by Bioengineer
October 31, 2019
in Immunology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Risky strategy prepares the parasite for the unexpected but could be exploited to fight the deadly disease

IMAGE

Credit: Penn State


The parasite that causes malaria expresses genes that code for the proteins it will need in later life stages, using two separate schemes to prevent these proteins from actually being made until they are needed, according to new research. Having the mRNAs for these genes at the ready is risky: It’s energetically costly, and proteins made prematurely can cause the parasites to become non-infectious. However, this strategy allows the parasite to quickly respond to unpredictable changes as it is transmitted between its mosquito and human hosts. Understanding these “translational repression” schemes may allow researchers to spot their weaknesses, which could be exploited in new strategies for combatting malaria.

The research, by a team of scientists at Penn State, the Institute for Systems Biology in Seattle, Johns Hopkins, and the University of Washington, appears October 31, 2019 in the journal, Nature Communications.

“The malaria parasite has a complex life-cycle in which it is transmitted back-and-forth between its mosquito and human hosts,” said Scott Lindner, assistant professor of biochemistry and molecular biology at Penn State and one of the leaders of the research team. “The parasite can’t predict when these transmissions will happen, so it needs to be able to react quickly to be able to deal with the changes in its environment. We knew how the parasite prepares for the jump from humans into mosquitoes, but until now no one had looked systematically at how the parasite prepared itself for going from mosquitoes into humans.”

The malaria parasite, which according to the 2018 WHO World Malaria Report affects 200 million people annually, resulting in around 400,000 deaths, enters a mosquito when it takes a blood meal from an infected mammal. Inside the mosquito the male and female parasites fuse and eventually produce an oocyst on the mosquito’s stomach. Inside the oocyst, the parasites undergo further transformation forming thousands of weakly-infectious sporozoites. When an oocyst ruptures, the sporozoites travel through the mosquito’s equivalent of blood and burrow into the mosquito’s salivary glands where they can be transmitted back into a mammal when the mosquito takes its next meal. During this trip from the oocyst and into the salivary gland, the sporozoites become 10,000 times more infectious.

The research team produced and purified large numbers of sporozoites from both the oocyst and salivary-gland stages, then used state-of-the-art RNA sequencing and mass spectrometry-based proteomics to identify essentially all of the mRNAs and proteins that were present in each stage. They did this in both Plasmodium yoelii–a malaria parasite that infects mice, which is easier to handle in the laboratory–and Plasmodium falciparum–a human-infectious parasite that causes most of the documented deaths associated with malaria.

“P. yoelii is often preferred in laboratory studies because we can easily track it through its entire life cycle, but it could have important differences to P. falciparum,” said Lindner. “By studying both, we can determine how conserved these processes are and whether there are specific mRNAs or proteins that behave similarly across the parasite species that infect different hosts.”

Through this study, the researchers demonstrated that, using a scheme similar to the parasites that are transmitted from humans to mosquitoes, the sporozoites produce mRNAs for genes that they will need in the next stage of their life cycle, but then actively repress their translation into proteins. As many as three-quarters of the most abundantly produced mRNAs are translationally repressed in this way.

“Excitingly, we identified two separate translational repression programs that operate simultaneously, independently, and upon different mRNAs,” said Lindner. “The first program represses mRNA produced in oocyst sporozoites, which code for proteins that are made at some point during the parasite’s trip from the mosquito’s midgut into the salivary glands. The second program represses mRNA that are produced throughout both sporozoite stages but doesn’t allow the production of the encoded proteins until the parasite is transmitted into its mammalian host.”

“We are now trying to find how these translational repression programs are controlled in the parasite,” said Lindner, “and if there are weaknesses that we can exploit in this risky strategy that we can use to push the parasite off the edge with new therapeutics.”

###

In addition to Lindner, the research team includes Michael P. Walker, Erin N. Vrana, Kevin J. Hart, and Allen M. Minns at Penn State; Kristian E. Swearingen and Robert L. Moritz at the Institute for Systems Biology in Seattle, WA; Melanie J. Shears and Photini Sinnis at the Johns Hopkins School of Public Health; and Stefan H.I. Kappe at the University of Washington. The research was funded by Penn State, the U.S. National Institutes of Health, the U.S. National Science Foundation, and a Johns Hopkins University Provost’s Postdoctoral Diversity Fellowship.

Media Contact
Sam Sholtis
[email protected]
814-865-1390

Original Source

http://science.psu.edu/news/Lindner10-2019

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-12936-6

Tags: BiochemistryBiologyDisease in the Developing WorldGeneticsInfectious/Emerging DiseasesMedicine/HealthParasitologyPublic HealthVaccines
Share14Tweet9Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Proteogenomic Study of Healthy vs. Cancerous Prostate Tissues Leveraging SILAC and Mutation Databases

Here’s a rewritten version of the headline for a science magazine post: “Could Desert Dust Hold the Key to Freezing Clouds?”

Lightning strikes kill 320 million trees annually, causing significant biomass loss

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.