• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Making the ‘human-body internet’ more effective

Bioengineer by Bioengineer
June 13, 2019
in Biology
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Human body communication can make data networks radically safer

IMAGE

Credit: Dairoku Muramatsu & Yoshifumi Nishida

Source: Equivalent Circuit Model Viewed from Receiver Side in Human Body Communication

Wireless technologies such as Wi-Fi and Bluetooth have made remote connectivity easier, and as electronics become smaller and faster, the adoption of “wearables” has increased. From smart watches to implantables, these devices interact with the human body in ways that are very different from those of a computer. However, they both use the same protocols to transfer information, making them vulnerable to the same security risks. What if we could use the human body itself to transfer and collect information? This area of research is known as human body communication (HBC). Now, scientists from Japan report HBC characteristics specific to impedance and electrodes, which according them “have the potential to improve the design and working of devices based on HBC.”

First, let’s understand exactly how HBC works and why it represents a more “secure” network. HBC is safer because it uses a lower-frequency signal that is sharply attenuated depending on the distance. The closed nature of the transmission results in lower interference and higher reliability, and, therefore, more secure connections. Having the device interact directly with the body also means that it has reliable biomedical applications.

HBC technologies use electrodes instead of antennas to couple signals to the human body. This can be used to conduct an electric field from a transmitter to a receiver, and thus to communicate data. HBC receivers work very similarly to radio frequency receivers; however, it’s much more difficult to determine their input impedance. This is important because this allows scientists to maximize the received signal power.

The most important factors are the arrangement of electrodes and the distance between the transmitter and the receiver. These affect the output impedance and the equivalent source voltage of the system, ultimately having an impact on the received signal power. The signal emanates from the transmitter electrode and goes through the body. The body’s conductivity couples the field to the environment and this serves as the return path for the transmitted signal.

In their study, the team of Japanese scientists– Dr Dairoku Muramatsu (Tokyo University of Science), Mr. Yoshifumi Nishida, Prof Ken Sasaki, Mr. Kentaro Yamamoto (all from the University of Tokyo), and Prof Fukuro Koshiji (Tokyo Polytechnic University)–sought out to analyze these characteristics by constructing an equivalent circuit model of the signal transmission that goes from the body to an off-body receiver through touch.

The signal electrodes of both the transmitter and the receiver, as well as the ground electrode of the transmitter, were attached to the body. The ground electrode of the receiver was left “floating” in air. This was unlike other contemporary HBC configurations, in which both ground electrodes are left floating in air. The researchers found that impedance increases with increasing distance between the transmitter electrodes. Interestingly, they also found that the size of the receiver ground was another factor that affected transmission. They report that capacitive coupling between receiver ground and human body increases as the former gets larger.

Wireless technologies such as Wi-Fi and Bluetooth have made remote connectivity easier, and as electronics become smaller and faster, the adoption of “wearables” has increased. From smart watches to implantables, these devices interact with the human body in ways that are very different from those of a computer. However, they both use the same protocols to transfer information, making them vulnerable to the same security risks. What if we could use the human body itself to transfer and collect information? This area of research is known as human body communication (HBC). Now, scientists from Japan report HBC characteristics specific to impedance and electrodes, which according them “have the potential to improve the design and working of devices based on HBC.”

First, let’s understand exactly how HBC works and why it represents a more “secure” network. HBC is safer because it uses a lower-frequency signal that is sharply attenuated depending on the distance. The closed nature of the transmission results in lower interference and higher reliability, and, therefore, more secure connections. Having the device interact directly with the body also means that it has reliable biomedical applications.

HBC technologies use electrodes instead of antennas to couple signals to the human body. This can be used to conduct an electric field from a transmitter to a receiver, and thus to communicate data. HBC receivers work very similarly to radio frequency receivers; however, it’s much more difficult to determine their input impedance. This is important because this allows scientists to maximize the received signal power.

The most important factors are the arrangement of electrodes and the distance between the transmitter and the receiver. These affect the output impedance and the equivalent source voltage of the system, ultimately having an impact on the received signal power. The signal emanates from the transmitter electrode and goes through the body. The body’s conductivity couples the field to the environment and this serves as the return path for the transmitted signal.

In their study, the team of Japanese scientists– Dr Dairoku Muramatsu (Tokyo University of Science), Mr. Yoshifumi Nishida, Prof Ken Sasaki, Mr. Kentaro Yamamoto (all from the University of Tokyo), and Prof Fukuro Koshiji (Tokyo Polytechnic University)–sought out to analyze these characteristics by constructing an equivalent circuit model of the signal transmission that goes from the body to an off-body receiver through touch.

The signal electrodes of both the transmitter and the receiver, as well as the ground electrode of the transmitter, were attached to the body. The ground electrode of the receiver was left “floating” in air. This was unlike other contemporary HBC configurations, in which both ground electrodes are left floating in air. The researchers found that impedance increases with increasing distance between the transmitter electrodes. Interestingly, they also found that the size of the receiver ground was another factor that affected transmission. They report that capacitive coupling between receiver ground and human body increases as the former gets larger.

The findings of this study are important as they enable scientists to design more efficient HBC devices, which are better tuned to the human electric field and, hopefully, better suited for user interaction.

Consider the way we interact with most technologies. Keyboards, screens, switches, and wires dominate the way we communicate, and despite smartphones and touchscreens, the basics of user interface, or “soft ergonomics,” have hardly changed in the last few decades. We still sit behind desks for hours and stare at monitors. Our connectivity is very dependent on wireless signals, and thus, the open nature of these networks makes our data vulnerable to hacker attacks.

By using the human body itself as a network, HBC could potentially change this.

As Dr Muramatsu and Mr. Nishida put it, “Because the electric field used in HBC has the property of being sharply attenuated with respect to distance, it hardly leaks to the surrounding space during signal transmission. Thus, using this human body communication model makes it possible to communicate with excellent confidentiality and without generating electromagnetic noise. However, one major drawback of HBC is that it cannot be used for high-speed data communication. Thus, the focus should be on applications of HBC that transmit relatively low-capacity data, such as authentication information and biomedical signals, for long periods with low power consumption.”

###

Media Contact
Tsutomu Shimizu
[email protected]

Related Journal Article

http://dx.doi.org/10.1109/TBCAS.2019.2918323

Tags: BioinformaticsBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesMolecular PhysicsNanotechnology/MicromachinesPhysiologyResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

AI-Driven Protein Design Advances T-Cell Immunotherapy Breakthroughs

August 1, 2025
Melanthiaceae Genomes Reveal Giant Genome Evolution Secrets

Melanthiaceae Genomes Reveal Giant Genome Evolution Secrets

August 1, 2025

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

August 1, 2025

Physicists Unravel the Enigma of Mysterious Membrane Dynamics

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary AI Tool Requires Minimal Data to Analyze Medical Images

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

What “And” vs. “Then” Reveal About Hospital Visits: Insights from Online Reviews

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.