• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Making it personal: How genetic technologies are changing the face of medicine

Bioengineer by Bioengineer
June 13, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For the future of medicine, clinicians and scientists at Children’s Hospital Los Angeles look to our genes

The age of one-size-fits-all medicine is fading. Taking its place is an era of personalized medicine – the practice of tailoring disease prevention, diagnosis, and treatment to patients as individuals. Many cancers, for example, are resistant to conventional therapies but respond to medications that target specific cancer-causing genetic mutations. Scientists and clinicians at Children’s Hospital Los Angeles developed a comprehensive genetic testing panel called OncoKids® to detect genetic markers that respond to targeted therapies. This technological advance has connected patients with life-saving clinical trials and medications.

Personalized medicine has expanded its capabilities as technology has grown. Scientists are now using a technology called metagenomic next-generation sequencing, or mNGS, to rapidly test clinical samples. This powerful assay can quickly compare unknown genetic material from a patient sample against thousands of known pathogen genomes. “Basically, we can determine the cause of the disease, whether it’s a virus, bacteria, or something else,” says Jeffrey Bender, MD, a physician specializing in infectious diseases at CHLA. “If it has genetic material, this test can identify the infection and provide information that allows us to select a treatment specific to fight it.”

Now that science has the capability to sequence and compare genomes, it is becoming clear that genomic testing can, and should be, used to identify infectious pathogens. This is especially important in diseases that could stem from multiple potential causes. For example, meningitis and encephalitis are serious central nervous system conditions that often arise from infection. Proper and timely diagnoses of these infections are critical so that patients can receive treatments before complications develop. But many types of pathogens – bacteria, viruses, fungi, and parasites – can cause meningitis and encephalitis, making targeted testing difficult. Though laboratories can test samples for a handful of possible culprits, there is a limit to the number of pathogens they can test for at one time. Negative results can delay treatments and leave doctors, patients, and families searching for answers.

Now, clinicians at CHLA and sites nationwide are showing that broader genetic testing can deliver answers that standard laboratory tests fail to provide. Instead of one particular target, mNGS testing quickly compares sample genetic material to thousands of targets. Dr. Bender and Jennifer Dien Bard, PhD, Director of the Clinical Microbiology and Virology Laboratory at CHLA, participated in a multi-center clinical trial to evaluate the clinical use of mNGS testing in pediatric patients with suspected meningitis or encephalitis.

Their study, highlighted today in the New England Journal of Medicine showed that this ‘agnostic’ testing could lead to treatments for infections that were not identified using standard testing methods. More than 200 patients at 8 hospitals, including CHLA, were enrolled in this year-long study. Cerebrospinal fluid was sampled from patients who presented with meningitis- or encephalitis-like symptoms. Samples were then analyzed using either standard laboratory testing or mNGS. Out of 58 total diagnoses, sequencing identified 13 infections – more than 20% – that were not detected in standard clinical testing.

Dr. Dien Bard and her colleagues in the Center for Personalized Medicine envision a future in which these agnostic, genomic assays are integrated into routine clinical care. “The trial showed just how sequencing technology can really have a positive clinical impact on patients. In just this study alone, thirteen infections were diagnosed solely because of this technology,” she says. “That’s thirteen additional families who got answers.”

###

The study (ClinicalTrials.gov number, NCT02910037) was led by Charles Chiu, MD, PhD, of the University of California, San Francisco.

About Children’s Hospital Los Angeles

Children’s Hospital Los Angeles has been ranked the top children’s hospital in California and sixth in the nation for clinical excellence by the prestigious U.S. News & World Report Honor Roll. The Saban Research Institute at CHLA is one of the largest and most productive pediatric research facilities in the United States. CHLA also is one of America’s premier teaching hospitals through its affiliation since 1932 with the Keck School of Medicine of the University of Southern California. For more, visit CHLA.org, the child health blog and the research blog.

Media Contact
Melinda Smith
[email protected]
http://dx.doi.org/10.1056/NEJMoa1803396

Tags: Clinical TrialsDiagnosticsGeneticsInfectious/Emerging DiseasesMedicine/Health
Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Multifaceted Genomics Unlocks Ultra-Rare Monogenic Diagnoses

August 7, 2025
Amino Acids as Postmortem Vitreous Biomarkers

Amino Acids as Postmortem Vitreous Biomarkers

August 7, 2025

Sedating Very Young Patients: Is Lateral Position Safer?

August 7, 2025

How Childhood Trauma Affects Nicotine Withdrawal Symptoms

August 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    75 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Elranatamab Outperforms UK Real-World Myeloma Treatments

    40 shares
    Share 16 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Multifaceted Genomics Unlocks Ultra-Rare Monogenic Diagnoses

Eicosyl Heptafluorobutyrate Disrupts Pseudomonas aeruginosa Communication

Amino Acids as Postmortem Vitreous Biomarkers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.