• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Magnetoacoustic waves: Towards a new paradigm of on-chip communication

Bioengineer by Bioengineer
April 6, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: B. Casals et al.

Researchers have observed directly and for the first time magnetoacoustic waves (sound-driven spin waves), which are considered as potential information carriers for novel computation schemes. These waves have been generated and observed on hybrid magnetic/piezoelectric devices. The experiments were designed by a collaboration between the University of Barcelona (UB), the Institute of Materials Science of Barcelona (ICMAB-CSIC) and the ALBA Synchrotron. The results show that magnetoacoustic waves can travel over long distances -up to centimeters- and have larger amplitudes than expected.

The observation of the magnetization waves was performed in a Nickel ferromagnetic thin film, which was excited by a deformation wave (called surface acoustic wave, SAW) originated in a piezoelectric substrate layer below the Nickel film. Although clear interaction between acoustic waves and magnetization dynamics has been reported in several systems, thus far, no direct observation of the underlying magnetic excitations existed, providing a quantification of both time and space.

Now researchers have published in Physical Review Letters their findings: “We designed an experiment ad hoc to image and quantify the magnetization dynamics generated by surface acoustic waves (SAW). The results clearly show that magnetization waves exist at distinct frequencies and wavelengths and that it is possible to create wave interferences” explains Ferran Macià, leader of the project at the UB and ICMAB.

The experiments show interference patterns of magnetization waves and provides new avenues for manipulation of these waves at room temperature “Our magnetization waves are coupled to the acoustic waves and thus, can travel long distances and have larger amplitudes than spin waves” explains Michael Foerster, beamline scientist of CIRCE-PEEM at ALBA. Such large-amplitude, long-distance waves could be well-suited for carrying information, processing data, or driving small motors.

The generation of magnetization dynamics through acoustic waves has attracted interest because it has some advantages over magnetic field induced excitations, such as more energy efficiency, larger spatial extension, or match of wavelengths.

The experiments were performed using the PEEM (Photoemission Electron Microscopy) at the CIRCE beamline at the ALBA Synchrotron to image the magnetization waves, which were synchronized with the synchrotron light pulses. “As wave are dynamic objects, they were imaged with stroboscopic snapshots thanks to this synchronization. The X-ray magnetic circular dichroism (XMCD) effect was used to obtain magnetic contrast in the images” explains Macià.

###

The study, in collaboration with the Paul-Drude-Institut in Berlin, was in the framework of a Frontier Interdisciplinary Project (FIP) of the ICMAB Severo Ochoa grant. The FIPs are aimed to develop high-risk exploratory projects of interdisciplinary character to generate cutting-edge research in the application areas of energy, electronics or health.

Media Contact
Bibiana Bonmatí
[email protected]

Original Source

https://www.ub.edu/web/ub/ca/menu_eines/noticies/2020/03/060.html

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.124.137202

Tags: Chemistry/Physics/Materials SciencesElectromagneticsMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025
blank

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    63 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovations and Trends in Guava Drying Technology

Cathepsin L: Dual Target to Boost Muscle and Immunity

Neural Networks Revolutionize Inverter-Based Resource Modeling

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.