• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Machine learning boosts the search for ‘superhard’ materials

Bioengineer by Bioengineer
December 17, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Model predicts promising new materials

IMAGE

Credit: University of Houston

Superhard materials are in high demand in industry, from energy production to aerospace, but finding suitable new materials has largely been a matter of trial and error based on classical materials such as diamonds. Until now.

Researchers from the University of Houston and Manhattan College have reported a machine learning model that can accurately predict the hardness of new materials, allowing scientists to more readily find compounds suitable for use in a variety of applications. The work was reported in Advanced Materials.

Materials that are superhard – defined as those with a hardness value exceeding 40 gigapascals on the Vickers scale, meaning it would take more than 40 gigapascals of pressure to leave an indentation on the material’s surface – are rare.

“That makes identifying new materials challenging,” said Jakoah Brgoch, associate professor of chemistry at UH and corresponding author for the paper. “That is why materials like synthetic diamond are still used even though they are challenging and expensive to make.”

One of the complicating factors is that the hardness of a material may vary depending on the amount of pressure exerted, known as load dependence. That makes testing a material experimentally complex and using computational modeling today almost impossible.

The model reported by the researchers overcomes that by predicting the load-dependent Vickers hardness based solely on the chemical composition of the material. The researchers report finding more than 10 new and promising stable borocarbide phases; work is now underway to design and produce the materials so they can be tested in the lab.

Based on the model’s reported accuracy, the odds are good. Researchers reported the accuracy at 97%.

First author Ziyan Zhang, a doctoral student at UH, said the database built to train the algorithm is based on data involving 560 different compounds, each yielding several data points. Finding the data required poring over hundreds of published academic papers to find data needed to build a representative dataset.

“All good machine learning projects start with a good dataset,” said Brgoch, who is also a principal investigator with the Texas Center for Superconductivity at UH. “The true success is largely the development of this dataset.”

In addition to Brgoch and Zhang, additional researchers on the project include Aria Mansouri Tehrani and Blake Day, both with UH, and Anton O. Oliynyk from Manhattan College.

Researchers traditionally have used machine learning to predict a single variable of hardness, Brgoch said, but that doesn’t account for the complexities of the property like load dependence, which he said still aren’t well understood. That makes machine learning a good tool, despite earlier limitations.

“A machine learning system doesn’t need to understand the physics,” he said. “It just analyzes the training data and makes new predictions based on statistics.”

Machine learning does have limitations, though.
“The idea of using machine learning isn’t to say, ‘Here is the next greatest material,’ but to help guide our experimental search,” Brgoch said. “It tells you where you should look.”

###

Media Contact
Jeannie Kever
[email protected]

Original Source

https://uh.edu/news-events/stories/2020/december-2020/12172020brgoch-superhard.php

Tags: Algorithms/ModelsChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Polyacrylic Acid-Copper System Detects Gaseous Hydrogen Peroxide

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

Insights on Menstrual Health in Eating Disorder Units

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.