• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Lysin therapy offers new hope for fighting drug-resistant bacteria

Bioengineer by Bioengineer
February 4, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Humans are in a constant arms race with infectious bacteria. To kill these disease microbes, we develop powerful antibiotics; and in turn, the bacteria develop resistance against these drugs. So we enhance our antibiotics, and the bacteria enhance themselves accordingly–resulting in so-called superbugs. Increasingly, medications fail to eliminate these highly adapted bacteria, leaving our bodies dangerously defenseless.

In light of this crisis, for almost 20 years Rockefeller’s Vincent A. Fischetti has been developing a novel form of antimicrobial ammunition known as lysins. Now, these bacteria-killing enzymes have been studied in a phase II human clinical trial, becoming the first antibiotic alternatives to achieve successful outcomes in this stage of clinical development.

Natural born killer

Some viruses are very good at killing bacteria. Known as bacteriophages, or simply phages, these viruses infect a microbe, replicate inside of it, and then produce lysin enzymes, which cleave the bacterium’s cell wall. As a result, progeny phages are released from within the bacterium, and the bacterium itself perishes.

In nature, this kind of assault is commonplace: bacteriophages inhabit everything from oceans and soil to human bodies, helpfully regulating microbe populations wherever they go. In fact, every 48 hours half the bacteria on earth are killed by phages, making lysins the most widespread bacteria-killing agents on Earth.

In the lab, lysins can be used as a tool to break down and study the cell walls of bacteria–which is exactly what Fischetti was doing at Rockefeller about two decades ago. Simultaneously, his lab was also working on a vaccine for streptococcus infections, and the broader research community was becoming increasingly worried about antibiotic-resistant infections. This confluence of events led Fischetti to a breakthrough.

“Since I was working with lysins, I knew they killed bacteria instantly. My lab happened to have animals that were orally colonized with streptococci for my vaccine studies,” he recalls. “So, I thought, let me just give these colonized mice some lysin and see what happens to the streptococci.”

The effect was dramatic: an hour after getting the drug, the animals were decolonized of their streptococci. The subsequent publication of this finding was the first to report the therapeutic use of phage lysins.

Compelled by this result, Fischetti and later other scientists began developing lysins against several types of drug-resistant bacteria, many of which successfully cured infections in a wide range of animal models. Until recently, however, no one had tested whether this type of therapy was safe and effective in humans.

A new approach

Drug-resistant bacteria are especially dangerous–and especially common–in hospitals, where infection can complicate the outcomes of already-sick patients. Of particular concern in this setting is infection with methicillin-resistant Staphylococcus aureus (S. aureus), or MRSA. Though some cases of MRSA are mild, the bacterium can be life-threatening if it spreads to the blood, a condition known as bacteremia.

As the “methicillin-resistant” part of its name suggests, MRSA doesn’t respond to standard antibiotics–which makes it an ideal candidate for treatment with a new kind of bacteria killer. To this end, seven and a half years ago the biotechnology company ContraFect licensed from Rockefeller a lysin that targets Staphylococci, as well as some Streptococci. The company then developed the lysin, now called exebacase, for the treatment of human S. aureus infections, including MRSA.

Following a phase I clinical trial showing that exebacase did not lead to any serious side effects in humans, ContraFect advanced the research into a randomized, double-blind, placebo-controlled phase II study of hospitalized patients with S. aureus bacteremia, approximately one third of whom had MRSA. 116 of these patients were randomly assigned to receive either exebacase or placebo, in addition to antibiotic therapy, and were followed for fourteen days. The researchers found that the rate of treatment response was more than 40 percent higher for MRSA patients receiving exebacase than for those treated with antibiotics alone–a result Fischetti views as very encouraging not only for exebacase, but for lysins at large.

“This is the first time a lysin-based drug has gone this far in clinical development. In fact, there is no antibiotic alternative that has ever successfully completed phase II trials,” he says.  “More work needs to be done, but this study is very promising.”

Moving forward, ContraFect intends to conduct a larger phase III trial, which is necessary for the lysin to be approved as a medicine.

Fischetti hopes that the development of exebacase is part of broader shift in how researchers and clinicians think about the management of bacterial infections. “Bacteria are growing more and more resistant to antibiotics,” he says. “And we’re showing that there are other ways to fight them.”

###

Media Contact
Katherine Fenz
[email protected]
212-327-7913
https://www.rockefeller.edu/news/24920-lysin-therapy-offers-new-hope-fighting-drug-resistant-bacteria/

Tags: BacteriologyBiologyClinical TrialsInfectious/Emerging DiseasesMedicine/HealthMolecular BiologyPublic HealthVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Urinary DNA Methylation Enhances Prostate Cancer Detection

Urinary DNA Methylation Enhances Prostate Cancer Detection

November 17, 2025
Exploring LncRNA’s Role in Sugar Beet’s Low Nitrogen Response

Exploring LncRNA’s Role in Sugar Beet’s Low Nitrogen Response

November 17, 2025

GWAS Uncovers Key Genes in Ziwuling Black Goat

November 16, 2025

Melatonin Boosts Hair Growth in Cashmere Goats

November 16, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    78 shares
    Share 31 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Urinary DNA Methylation Enhances Prostate Cancer Detection

Advances in Fertility Preservation Techniques for Cancer Patients

Study Reveals Connection Between Extreme Heat and Work Disability in Older, Marginalized Workers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.