• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Lower oxygen levels to impact the oceanic food chain

Bioengineer by Bioengineer
December 19, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Stephani Gordon, Open Boat Films

ST. PETERSBURG, Fla. (December 19, 2018)- Tiny fish known to survive where most marine life could not, may no longer be able to thrive under diminishing oxygen levels.

A new study published in Science Advances finds just the slightest change in oxygen level could have tremendous ramifications on the food chain. Rising temperatures are causing mid-water regions with very low oxygen, known as Oxygen Minimum Zones (OMZs), to expand in the eastern tropical North Pacific Ocean. While some organisms in certain regions may be able to adapt, researchers found those living in OMZs likely cannot as they’re already pushed to their physiological limits.

“These animals have evolved a tremendous ability to extract and use the small amount of oxygen available in their environment,” said study author Brad Seibel, PhD, professor of biological oceanography at the University of South Florida College of Marine Science. “Even so, we found that natural reductions in oxygen levels of less than 1% were sufficient to exclude most species or alter their distribution.”

Researchers looked at many different types of marine zooplankton, which includes fishes and crustaceans that are essential to the marine food chain. Cyclothone, for example, is among the most abundant vertebrates in the world, while krill are important in the diets of fishes, squids and whales.

With the expansion of OMZs, these species may be pushed into shallower water where there’s more sunlight, higher temperatures and greater risk of predators.

Seibel was chief scientist of the expedition that studied the physiological tolerance of animals across a range of oxygen values. He found that animals in this region had a tremendous tolerance for low oxygen, but that they were living at oxygen values near their evolved limits. Thus, small oxygen changes had a substantial impact on the abundance and distribution of most species. Further climate-related deoxygenation may dramatically alter these marine ecosystems.

###

Media Contact
Tina Meketa
[email protected]
813-955-2593

Tags: Climate ChangeEarth ScienceEcology/EnvironmentMarine/Freshwater BiologyOceanographyTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Decision-Making in Dementia Caregivers’ Mobility

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.