• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Lossless conduction at the edges

Bioengineer by Bioengineer
May 26, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Department of Physics, University of Basel

Topological insulators represent a key area of research because they could potentially be used as superconductors in the electronics of the future. Materials of this kind behave like insulators on the inside, whereas their surfaces have metallic properties and conduct electricity. A three-dimensional crystal of a topological insulator therefore conducts electricity on its surface, while no current can flow inside. Moreover, due to quantum mechanics, the conductivity on the surface is almost lossless – the electricity is conducted over long distances without heat generation.

In addition to these materials, there is another class known as second-order topological insulators. These three-dimensional crystals have conductive, one-dimensional channels running along only certain crystal edges. Materials of this kind are particularly well suited to potential applications in quantum computing.

Theoretical prediction

Experts assume that the semimetal bismuth exhibits some of the properties of a second-order topological material. Moreover, researchers have also predicted – from theory – that atomically thin layers of another semimetal, tungsten ditelluride (WTe2), will behave like second-order topological insulators – in other words, they will conduct electricity losslessly at the edges while the rest of the layer behaves like an insulator.

The team led by Professor Christian Schönenberger of the Department of Physics and the Swiss Nanoscience Institute at the University of Basel has now analyzed tiny tungsten ditelluride crystals consisting of between one and 20 layers. To determine the material’s electrical characteristics, they attached superconducting contacts to it before applying a magnetic field. As the material was sensitive to oxidation, the researchers worked in a special low-oxygen box and coated the tungsten ditelluride with another crystal, which was stable in air.

Characteristic oscillations

By analyzing the current flow within the main crystal, the scientists detected numerous slowly decaying oscillations. “Whereas a uniform current distribution leads to rapidly decaying oscillations, the extremely conductive edge states generate strongly oscillating, slowly decaying currents such as the ones we measured,” explains Dr. Artem Kononov, first author of the study and a Georg H. Endress fellow at the Department of Physics. “The only possible explanation for our results is that a large fraction of the current flows along the narrow edges.”

“These observations support theoretical predictions that tungsten ditelluride is a higher-order topological material. This opens up new possibilities for topological superconductivity, which could have applications in areas such as quantum computing,” says Christian Schönenberger, who is investigating topological superconductivity in stacks of certain two-dimensional materials as part of an ERC project.

###

Media Contact
Christian Schönenberger
[email protected]

Original Source

https://www.unibas.ch/en/News-Events/News/Uni-Research/Lossless-conduction-at-the-edges.html

Related Journal Article

http://dx.doi.org/10.1021/acs.nanolett.0c00658

Tags: Chemistry/Physics/Materials SciencesMaterialsSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Navigating Shadows: Treating Anorexia and C-PTSD

Curcuma longa Nanocomposites Combat Drug-Resistant Pathogens

Preoperative BMI Influences Outcomes in Infective Endocarditis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.