• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, March 27, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Loss of reptiles poses threat for small islands where humans may have caused extinctions

Bioengineer by Bioengineer
February 6, 2023
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new examination of ancient and current species of reptiles conducted by a University of Texas at Austin paleobiologist reveals the serious impact of the disappearance of even a few species of reptiles in some island areas. The study, published in the Proceedings of the National Academy of Sciences, has startling conclusions about how, on smaller islands in the Caribbean where human impact was greatest, extinctions have led to the loss of up to two-thirds of the supports for the ecosystem that native reptile species once provided there.

Iguanavsmongoose

Credit: Image courtesy of The University of Texas at Austin. Source image of iguana from WikiCommons user Postdlf.

A new examination of ancient and current species of reptiles conducted by a University of Texas at Austin paleobiologist reveals the serious impact of the disappearance of even a few species of reptiles in some island areas. The study, published in the Proceedings of the National Academy of Sciences, has startling conclusions about how, on smaller islands in the Caribbean where human impact was greatest, extinctions have led to the loss of up to two-thirds of the supports for the ecosystem that native reptile species once provided there.

Although similar studies have looked at the role of large mammals or other types of animals in ecosystems over time, this is the first to do so with reptiles—a key component of many island ecosystems.

Exploring what’s known as functional diversity, the study goes beyond cataloging different living things in a place over time, in this case, 418 Caribbean reptile species. Instead, the study maps out the functions that those species offer that support a thriving natural environment. The 418 species can be collapsed into 123 functional entities: groupings of species that share the same suite of traits and may perform similar ecosystem services.

“Functional diversity is a really important measure of the health of an ecosystem,” said Melissa Kemp, an assistant professor of integrative biology at UT Austin. “It’s important to understand the number of species in a given system, but it’s equally, if not more, important to understand the roles those species play. That’s the measure of functional diversity.”

For example, when the giant tortoises of the Caribbean were hunted to extinction, the island region lost not only the tortoises but a core service the reptiles provided. Giant tortoises are important vehicles to spread plant seeds. That function was lost in the Caribbean, and the situation was made worse by the extinction of other large-bodied herbivores such as sloths, leading to certain plants having limited dispersal agents and restricted ranges.

Species introduced by humans also contribute to shifts in functional diversity over time, with sometimes mixed results. One of the clearcut invasive species villains of the study is the mongoose. The small weasel-like mammal preys on reptiles and was brought to the islands by European colonizers.

“In the historical record, you can see when Europeans arrived and the mongoose was introduced, reptile species disappeared on these islands,” Kemp said.

However, the opposite was true when green iguanas were introduced to islands that had lost reptile-related functional diversity. The green iguana filled the gaps. In fact, the species helped return functional diversity to prehistoric levels in some cases.

“While the green iguana is functionally similar to some of the native iguanas, there is concern about how it interacts with native iguanas and its long-term impacts on functional diversity,” Kemp said. “In some places where they co-occur, the invasive green iguanas are interbreeding with native iguanas.”

Kemp found that smaller islands, in particular, lack the buffer that larger islands have when they lose a set of reptile species that help to keep an ecosystem intact to an event like the introduction of the mongoose. For example, the largest islands, Cuba, Jamaica, Hispaniola and Puerto Rico, retain 80%-98% of their native functional entities. The study found that smaller islands that had limited human impact retained much of their functional diversity, too: Mona and Sombrero, two islands that are no longer inhabited, were used for limited mining after European colonization but had no large-scale agriculture, dense human population or mongoose introduced and retain 75% of their native functional entities.

The islands of the Caribbean are some of the most biodiverse places on Earth, home to delicate ecosystems and teeming with species that exist nowhere else on the planet. Without functional diversity that includes various reptiles, however, more ecosystems are susceptible to collapse, making the topic a vital one for conservation.

“It’s becoming readily apparent that we’re not going to be able to save every single species. Some are already extinct or functionally extinct in the wild,” Kemp said. “Trying to conserve the functions that organisms provide to an ecosystem might be a bigger focus moving forward.”

Funding for the research was provided by the National Science Foundation.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2201944119

Method of Research

Observational study

Subject of Research

Animals

Article Title

Defaunation and species introductions alter long-term functional trait diversity in insular reptiles

Article Publication Date

6-Feb-2023

COI Statement

None

Share12Tweet8Share2ShareShareShare2

Related Posts

beaver skull reconstruction

Beaver fossil named after Buc-ee’s

March 27, 2023
Hybrid micro-robot simulation

Meet the hybrid micro-robot: The tiny robot that is able to navigate in a physiological environment and capture targeted damaged cells

March 27, 2023

Machine learning-aided scoring of synthesis difficulties for designer chromosomes

March 27, 2023

Don Quixote gives his name to a new plant species only known from La Mancha, Spain

March 27, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    66 shares
    Share 26 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel Click chemistry technology for ultrafast analysis of intracellular lipids

Storing information with spins: Creating new structured spin states with spatially structured polarized light

In the tropics, woody vines make lightning more deadly for forests

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In