• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Literal rise of the internet enables new climate science

Bioengineer by Bioengineer
October 13, 2020
in Science News
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

NSF helps Rice University professor crunch data on atmospheric gravity waves

IMAGE

Credit: Loon

HOUSTON – (Oct. 12, 2020) – An unintended consequence of industry’s quest to expand the internet could be a boon for weather prediction and climate research.

Fluid dynamicist Pedram Hassanzadeh of Rice University’s Brown School of Engineering has received a National Science Foundation grant to study data from high-altitude balloons that measure atmospheric conditions as they rise to provide internet connections to otherwise inaccessible places around the globe.

The collaborative grant to Rice of $1.1 million will support Hassanzadeh and his collaborators’ efforts to solve one of the main problems in weather and climate prediction: Using high-quality measurements to understand the physics of these phenomena and account for them in weather and climate models.

Additional grants went to Hassanzadeh’s colleagues, Aditi Sheshadri at Stanford, Edwin Gerber at New York University and M. Joan Alexander at NorthWest Research Associates.

The goal is to interpret the effect of atmospheric gravity waves — what we might see as rippling clouds high in the sky — that influence atmospheric winds in still-mysterious ways.

Think of these waves like spreading ripples in a pond, but turned upside down. The “rocks” that cause them are mountains, clouds or thunderstorms that disturb moving air near the surface.

These ripples are small and fast, Hassanzadeh said, with wavelengths as small as 100 meters and time scales between peaks as short as a few minutes. They are hard to observe using Earth-orbiting satellites, but as these ripples propagate to higher altitudes, they become particularly impactful once they transit from the troposphere to stratosphere at about 10 kilometers.

Gravity waves have been known to influence the weather and the climate system. For example, they affect the variability of the Quasi-biennial oscillation in the tropical stratosphere and the stratospheric polar vortex. Scientists want to accurately account for these disturbances in weather and climate models to better predict future extreme events or the effects of climate change.

“People don’t usually think about them, but there’s evidence that even though these waves are so fast — with timescales of a few minutes to hours — and so small, they can have an impact on day-to-day and extreme weather,” said Hassanzadeh, who joined Rice’s Department of Mechanical Engineering in 2016.

“They can also become important to understanding climate change, but right now the models are crude,” he said. “We cannot see the full picture of gravity waves with a wavelength of a few hundred meters from satellites. And our climate models currently have a typical resolution of 100 kilometers.”

The project would be possible but far more difficult and expensive had not Loon LLC, a sister company to Google, started launching high-altitude balloons in the far reaches of the world in 2013. The company’s intent was, and is, to bring the internet to underserved populations. It was not to provide massive amounts of data about the atmosphere to scientists.

But since the balloons take such measurements frequently during each flight, the data was there for the asking. “With machine learning and the capabilities to do very high-resolution modeling, we think we can put together something scientists can download and use,” Hassanzadeh said.

Hassanzadeh and his colleagues expect to use their data and machine learning to produce new models that represent gravity waves in computationally demanding weather and climate models, and to develop a better understanding of how gravity waves affect jet streams, the Quasi-biennial oscillation, and the polar vortex. The results will also help study how all of these phenomena respond to increased atmospheric greenhouse gas concentrations.

“The big picture is that for the foreseeable future, we are not going to run weather and climate models at a resolution that can solve for these waves,” he said. “That would require a resolution of a few hundred meters, and the computational cost doesn’t scale linearly. As a result, it’s essential that we have better representation of these wave phenomena in our models.”

###

Read about the grant at https://www.nsf.gov/awardsearch/showAward?AWD_ID=2005123&HistoricalAwards=false

This news release can be found online at https://news.rice.edu/2020/10/12/literal-rise-of-the-internet-enables-new-climate-science/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related materials:

Future Texas hurricanes: Fast like Ike or slow like Harvey?: http://news.rice.edu/2020/07/06/future-texas-hurricanes-fast-like-ike-or-slow-like-harvey-2/

The Environmental Fluid Dynamics Group: https://pedram.rice.edu

Department of Mechanical Engineering: https://mech.rice.edu

George R. Brown School of Engineering: https://engineering.rice.edu

Images for download:

https://news-network.rice.edu/news/files/2020/10/1012_GRAVITY-1-WEB.jpg

A Loon balloon lifts off. Atmospheric data collected by the internet satellites could help refine weather forecasts and inform studies of climate change. (Credit: Loon)

https://news-network.rice.edu/news/files/2020/10/1012_GRAVITY-2-WEB.jpg

Gravity waves overlap over Australia in this NASA satellite image. Defining how atmospheric gravity waves influence weather and climate is the topic of a new study funded by the National Science Foundation. (Credit: Courtesy of NASA/Visible Earth)

https://news-network.rice.edu/news/files/2020/10/1012_GRAVITY-4-WEB.jpg

Rice University engineer Pedram Hassanzadeh has received a National Science Foundation grant to use data from internet balloons to study how atmospheric gravity waves influence weather and climate. (Credit: Tommy LaVergne/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,978 undergraduates and 3,192 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Media Contact
Jeff Falk
[email protected]

Original Source

https://news.rice.edu/2020/10/12/literal-rise-of-the-internet-enables-new-climate-science/

Tags: Biomedical/Environmental/Chemical EngineeringClimate ChangeInternetMechanical EngineeringMeteorologyTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Epithelial Membrane Damage Triggers Allergic Inflammation

Epithelial Membrane Damage Triggers Allergic Inflammation

July 31, 2025
Targeting Fibroblast sFRP2: siRNA Therapy for Uterine Scarring

Targeting Fibroblast sFRP2: siRNA Therapy for Uterine Scarring

July 31, 2025

Bispecific CDH17-GUCY2C ADC Targets Colorectal Cancer

July 31, 2025

Zinc Found in Blocked Syringes: A Closer Look at Contamination Sources

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Epithelial Membrane Damage Triggers Allergic Inflammation

Targeting Fibroblast sFRP2: siRNA Therapy for Uterine Scarring

Bispecific CDH17-GUCY2C ADC Targets Colorectal Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.