• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 28, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Listening to the call of the wild: Tracking deer movements using sound

Bioengineer by Bioengineer
January 28, 2021
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Institute of Industrial Science, the University of Tokyo

Tokyo, Japan — In the marchland of Japan’s Oze National Park, keeping track of the deer population has been a difficult and time-consuming task for the park rangers. Now their lives could get much easier, thanks to a novel technique for tracking deer movements using unmanned listening devices developed by researchers at the Institute of Industrial Science, a part of The University of Tokyo.

Monitoring deer numbers is important in Oze and other national parks in Japan because deer are not native to the ecosystem and can have damaging effects on it. Current methods of monitoring deer populations range from traditional techniques such as counting droppings to photographing deer at night using automated cameras or from above during the day using unmanned aerial vehicles (UAVs). Each of these methods has its drawbacks and limitations–for example, the thick forest cover in some parts of the national park makes it difficult to see the deer from above using UAVs.

“The problem with using recording devices to estimate the size of deer populations in the past was that it was difficult to avoid counting the same deer multiple times–by setting up a grid of listening stations, we are able to triangulate the position of each deer with precision and track its movements,” says Tadanobu Okumura, one of the researchers who developed the technology.

The researchers built a prototype listening station which is powered by solar panels and automatically synchronizes its internal clock with a GPS satellite. As the recordings from each of the stations are synchronized, the lag in the time it takes the sound of a deer to reach the recording station can be used to determine its location with precision using a triangulation technique.

“When we tested our prototype in an experimental setting in the playground of The University of Tokyo, we were able to pinpoint the location of a sound within five meters. In a second trial under more realistic conditions in the marshland at Oze National Park, it was possible to locate a sound to within about fifteen meters,” explains Kazuo Oki, who also worked on the project. During a two-hour trial in Oze, the system picked up 72 distinct deer calls.

This prototype is a first step toward building a system that can be installed in the wild and monitored remotely. In the muddy wetlands of Oze, this could make the task of counting deer a lot easier.

###

About Institute of Industrial Science (IIS), the University of Tokyo Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and realworld applications.

Media Contact
Kazuo Oki
[email protected]

Original Source

https://www.iis.u-tokyo.ac.jp/en/news/3470/

Tags: AcousticsBiodiversityBiologyEcology/EnvironmentForestryNaturePopulation BiologyZoology/Veterinary Science
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI

February 27, 2021
IMAGE

Cerium sidelines silver to make drug precursor

February 26, 2021

Agents of food-borne zoonoses confirmed to parasitise newly-recorded in Thailand snails

February 26, 2021

Dinosaur species: ‘Everyone’s unique’

February 26, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    638 shares
    Share 255 Tweet 160
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceMedicine/HealthcancerInfectious/Emerging DiseasesEcology/EnvironmentMaterialsCell BiologyClimate ChangeBiologyGeneticsPublic HealthChemistry/Physics/Materials Sciences

Recent Posts

  • Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI
  • When foams collapse (and when they don’t)
  • UTA researcher explores effects of trauma at the cellular, tissue levels of the brain
  • Picture books can boost physical activity for youth with autism
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In