• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, January 26, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Light-based processors boost machine-learning processing

Bioengineer by Bioengineer
January 6, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Oxford

The exponential growth of data traffic in our digital age poses some real challenges on processing power. And with the advent of machine learning and AI in, for example, self-driving vehicles and speech recognition, the upward trend is set to continue. All this places a heavy burden on the ability of current computer processors to keep up with demand.

Now, an international team of scientists has turned to light to tackle the problem. The researchers developed a new approach and architecture that combines processing and data storage onto a single chip by using light-based, or “photonic” processors, which are shown to surpass conventional electronic chips by processing information much more rapidly and in parallel.

The scientists developed a hardware accelerator for so-called matrix-vector multiplications, which are the backbone of neural networks (algorithms that simulate the human brain), which themselves are used for machine-learning algorithms. Since different light wavelengths (colors) don’t interfere with each other, the researchers could use multiple wavelengths of light for parallel calculations. But to do this, they used another innovative technology, developed at EPFL, a chip-based “frequency comb”, as a light source.

“Our study is the first to apply frequency combs in the field of artificially neural networks,” says Professor Tobias Kippenberg at EPFL, one the study’s leads. Professor Kippenberg’s research has pioneered the development of frequency combs. “The frequency comb provides a variety of optical wavelengths that are processed independently of one another in the same photonic chip.”

“Light-based processors for speeding up tasks in the field of machine learning enable complex mathematical tasks to be processed at high speeds and throughputs,” says senior co-author Wolfram Pernice at Münster University, one of the professors who led the research. “This is much faster than conventional chips which rely on electronic data transfer, such as graphic cards or specialized hardware like TPU’s (Tensor Processing Unit).”

After designing and fabricating the photonic chips, the researchers tested them on a neural network that recognizes of hand-written numbers. Inspired by biology, these networks are a concept in the field of machine learning and are used primarily in the processing of image or audio data. “The convolution operation between input data and one or more filters – which can identify edges in an image, for example, are well suited to our matrix architecture,” says Johannes Feldmann, now based at the University of Oxford Department of Materials. Nathan Youngblood (Oxford University) adds: “Exploiting wavelength multiplexing permits higher data rates and computing densities, i.e. operations per area of processer, not previously attained.”

“This work is a real showcase of European collaborative research,” says David Wright at the University of Exeter, who leads the EU project FunComp, which funded the work. “Whilst every research group involved is world-leading in their own way, it was bringing all these parts together that made this work truly possible.”

The study is published in Nature this week, and has far-reaching applications: higher simultaneous (and energy-saving) processing of data in artificial intelligence, larger neural networks for more accurate forecasts and more precise data analysis, large amounts of clinical data for diagnoses, enhancing rapid evaluation of sensor data in self-driving vehicles, and expanding cloud computing infrastructures with more storage space, computing power, and applications software.

###

Reference

J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A.S. Raja, J. Liu, C.D. Wright, A. Sebastian, T.J. Kippenberg, W.H.P. Pernice, H. Bhaskaran. Parallel convolution processing using an integrated photonic tensor core. Nature 07 January 2021. DOI: 10.1038/s41586-020-03070-1

Media Contact
Nik Papageorgiou
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-03070-1

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsHardwareOpticsTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Photocatalytic reaction in the shadow

January 25, 2021
IMAGE

How complex oscillations in a quantum system simplify with time

January 25, 2021

Better bundled: new principle for generating X-rays

January 25, 2021

CHEOPS finds unique planetary system

January 25, 2021
Next Post
IMAGE

uOttawa study shows that mindfulness can help ease the pain of breast cancer survivors

IMAGE

The link between opioid medication and pancreatic cancer

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    68 shares
    Share 27 Tweet 17
  • New drug form may help treat osteoporosis, calcium-related disorders

    41 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyTechnology/Engineering/Computer ScienceInfectious/Emerging DiseasesMedicine/HealthCell BiologyChemistry/Physics/Materials SciencesGeneticscancerClimate ChangeMaterialsPublic HealthEcology/Environment

Recent Posts

  • Highly specific synaptic plasticity in addiction
  • Breakthrough design at UBCO vastly improves mechanical heart valve
  • How did Florida fail to respond to a coral disease epizootic and what’s to follow?
  • Impact of patient-reported symptom information on lumbar spine MRI Interpretation
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In