• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Light and peptides: New method diversifies natural building blocks of life

Bioengineer by Bioengineer
April 18, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: J. Waser/EPFL

Discovering new biological targets is a critical part of our ongoing battle against diseases. Over the years, scientists have made impressive progress towards the understanding of biological systems, constantly identifying novel targets. The structural diversity of these targets requires a broad range of different therapeutic agents.

“Small synthetic molecules are still key players, but biomolecules such as peptides, proteins and oligonucleotides have become an important area of research,” says Professor Jérôme Waser, director of EPFL’s Laboratory of Catalysis and Organic Synthesis. Peptides are particularly interesting, with about 140 evaluated in clinical trials in 2015. However, peptides often are not stable in the blood and cannot permeate cells well, both of which diminish their potential use as drugs.

One solution to overcome these difficulties is chemically modifying the natural structure of peptides, a process called “functionalization”. In chemistry, a molecule is “functionalized” by adding chemical groups to it, thus endowing it with new functions, capabilities, or properties, such as enhanced stability in the human body. However, functionalization of peptides is difficult, due to their complex structure.

“The main reason is the lack of selectivity when you try to modify a peptide: it contains many positions that react with chemicals, resulting in useless mixtures,” explains Waser. “Therefore, methods enabling selective functionalization of a single position in peptides are actively sought-after to access more efficient ant stable peptide-based drugs.”

This is what Waser’s lab has now achieved, using “EBX reagents” – a class of very reactive organic compounds developed by the group and now commercially available. Using those reagents, the researchers converted the C-terminal carboxylic acid of peptides into a carbon-carbon triple bond – an alkyne (in chemical jargon a “decarboxylative alkynylation”). The alkyne moiety is a very valuable functional group that can be used to further modify the peptides. It has been used extensively in drug discovery, material sciences and chemical biology.

Peptides do not spontaneously react with EBX reagents, so the scientists had to use a catalyst. In order to activate it, the researchers turned to light or, in more technical terms, “photoredox catalysis”: visible light is absorbed by the catalyst, which then selectively activates one bond in the reacting molecules. “Using light as a renewable energy source to perform organic reactions allows a temporal and spatial resolution with very mild reaction conditions,” says Waser.

The researchers made two innovations: First, they designed novel fine-tuned organic dyes as photoredox catalysts. This was important as light-mediated reactions are based usually on rare, toxic and expensive transition metal catalysts.

Second, the researchers achieved this first “decarboxylative alkynylation” on native peptides. This is an especially attractive one-step transformation of a natural compound into a synthetic derivative as it offers a platform for modifying the physical and chemical properties of the peptide through a single, easy to perform manipulation (all the “ingredients” just need to be mixed up and let to stand in natural light).

The method can be used with almost all amino acids present on the peptides, while maintaining complete selectivity towards the C-terminal position over the peptide side-chains.

With their new method, the scientists were also able to obtain derivatives from the valuable bioactive peptide GRGDNP that blocks cells from attaching to fibronectin, an important process in the vasodilatation of blood vessels, which could be very useful in the study of cardiovascular disease.

###

Reference

Marion Garreau, Franck Le Vaillant Jerome Waser. C-Terminal Bioconjugation of Peptides through Photoredox Catalyzed Decarboxylative Alkynylation. Angewandte Chemie 18 April 2019. DOI: 10.1002/anie.201901922

Media Contact
Nik Papageorgiou
[email protected]

Original Source

https://actu.epfl.ch/news/new-method-diversifies-the-building-blocks-of-life/

Related Journal Article

http://dx.doi.org/10.1002/anie.201901922

Tags: BiochemistryBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesPharmaceutical SciencesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Targeting UTI-causing E. coli with Phage Therapy

September 30, 2025
Natural Antimicrobial Compounds in Pollen May Shield Bee Colonies from Infections

Natural Antimicrobial Compounds in Pollen May Shield Bee Colonies from Infections

September 30, 2025

Unraveling Gene Impact of Glucose on Anisakis Development

September 30, 2025

Mapping Safflower HD-ZIP Genes Under Drought Stress

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    87 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    59 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Lithium-Ion Battery Health with Swin Transformer

Fractional vs. Standard COVID-19 Boosters: 24-Month Study

Enhanced Zinc-Ion Battery Cathodes with Eu-Doped β-MnO₂

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.