• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, June 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

LETI’s research will help apply magnetotactic bacteria in oncology

Bioengineer by Bioengineer
July 14, 2021
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Kamil Gareev, Associate Professor at ETU “LETI,” justified the prospects of using magnetotactic bacteria to treat malignant tumors.

IMAGE

Credit: Saint Petersburg Electrotechnical University

Kamil Gareev, Associate Professor at ETU “LETI,” justified the prospects of using magnetotactic bacteria to treat malignant tumors.

LETI researchers identified the main properties of magnetotactic bacteria and described the possibilities of their application in medicine. The results obtained will help create theranostic agents in neurooncology and cardioprotection. The results of the joint study with colleagues from St. Petersburg State University, RAS Institute of Cytology, and RAS Institute of Biotechnology were published as an overview article in the journal Magnetochemistry.

Magnetotactic bacteria (MTB) are distinguished by their ability to synthesize magnetosomes, special cellular organelles in which magnetite biomineralization occurs. Thanks to their magnetic properties, MTBs and isolated magnetosomes can be used in medicine to fight cancer. Using magnetosomes, drugs will be transported directly to the malignant tumor. In addition, scientists aim to study the formation of bacterial magnetite crystals inside MTB cells, the mechanisms of magnetostatic interaction between individual magnetosomes, and their chemical and aggregative stability outside the bacterial cells. These results will become the core of research in paleomagnetism and the physics of magnetic phenomena.

Currently, scientists from Germany, France, Brazil, the USA, and Japan are engaged in large-scale research of magnetotactic bacteria. The research of LETI scientists will be the first in St. Petersburg. LETI chose an interdisciplinary approach: the university formed a research team, which includes specialists in different fields – physics of magnetic phenomena, rock magnetism and magnetofossils, neurooncology, and target therapy based on nanoparticles, as well as the synthesis of composite magnetic particles based on iron oxide. That will make it possible to carry out a versatile study and obtain objective results.

“We expect to eventually complete the full cycle of research – from fermentation of MTBs in high throughput automated bioreactors of large volume and evaluation of their physical characteristics to functionalization of magnetosomes with pharmaceuticals and their laboratory tests. Thus, subject to the achievement of the set goals, for the first time in our city, there will be world-class results in this field of science.” – Kamil Gareev, Associate Professor of the Department of Micro- and Nanoelectronics of LETI, Senior Researcher of the Engineering Center for Microtechnology and Diagnostics

The next stage of studying MTBs will bring scientists closer to the practical use of structures based on bacterial magnetosomes in medicine as new tools for targeted drug delivery, hyperthermia therapy, and contrast agents for magnetic resonance imaging. “Compared to currently used structures based on synthetic iron oxide nanoparticles, bacterial magnetite has better chemical stability, high uniformity in shape and size, and, even more importantly, high biocompatibility,” commented Kamil Gareev.

LETI scientists obtained the first results of studying magnetic nanoparticles in 2013, and since then, research in this direction has continued. Until 2021, the research mainly focused on the properties of synthetic, rather than biogenic, magnetic nanoparticles, such as magnetosomes. The long-term experience allowed researchers to move on to a full-fledged study of magnetotactic bacteria and bacterial magnetosomes.

###

Media Contact
Bodak Darya
[email protected]

Original Source

https://etu.ru/en/university/news/letis-research-will-help-apply-magnetotactic-bacteria-in-oncology

Tags: cancerCardiologyClinical TrialsMedicine/HealthResearch/Development
Share13Tweet8Share2ShareShareShare2

Related Posts

Perivascular Fluid Diffusivity Predicts Early Parkinson’s Decline

Perivascular Fluid Diffusivity Predicts Early Parkinson’s Decline

June 14, 2025
Rewrite Excitation-inhibition balance abnormally shapes structure–function coupling of gray matter in Parkinson’s disease as a headline for a science magazine post, using no more than 8 words

Rewrite Excitation-inhibition balance abnormally shapes structure–function coupling of gray matter in Parkinson’s disease as a headline for a science magazine post, using no more than 8 words

June 13, 2025

Rewrite Repurposing the memory-promoting meclofenoxate hydrochloride as a treatment for Parkinson’s disease through integrative multi-omics analysis as a headline for a science magazine post, using no more than 8 words

June 13, 2025

Rewrite Myelin–axon interface vulnerability in Alzheimer’s disease revealed by subcellular proteomics and imaging of human and mouse brain as a headline for a science magazine post, using no more than 8 words

June 13, 2025
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    158 shares
    Share 63 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    75 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    68 shares
    Share 27 Tweet 17
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16
v>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Perivascular Fluid Diffusivity Predicts Early Parkinson’s Decline

Are Traditional Podcasters Becoming Obsolete? AI-Driven Podcasts Pave the Way for Accessible Science

Rewrite The untranslatability of environmental affective scales: insights from indigenous soundscape perceptions in China as a headline for a science magazine post, using no more than 8 words

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.