• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

LETI’s research will help apply magnetotactic bacteria in oncology

Bioengineer by Bioengineer
July 14, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Kamil Gareev, Associate Professor at ETU “LETI,” justified the prospects of using magnetotactic bacteria to treat malignant tumors.

IMAGE

Credit: Saint Petersburg Electrotechnical University

Kamil Gareev, Associate Professor at ETU “LETI,” justified the prospects of using magnetotactic bacteria to treat malignant tumors.

LETI researchers identified the main properties of magnetotactic bacteria and described the possibilities of their application in medicine. The results obtained will help create theranostic agents in neurooncology and cardioprotection. The results of the joint study with colleagues from St. Petersburg State University, RAS Institute of Cytology, and RAS Institute of Biotechnology were published as an overview article in the journal Magnetochemistry.

Magnetotactic bacteria (MTB) are distinguished by their ability to synthesize magnetosomes, special cellular organelles in which magnetite biomineralization occurs. Thanks to their magnetic properties, MTBs and isolated magnetosomes can be used in medicine to fight cancer. Using magnetosomes, drugs will be transported directly to the malignant tumor. In addition, scientists aim to study the formation of bacterial magnetite crystals inside MTB cells, the mechanisms of magnetostatic interaction between individual magnetosomes, and their chemical and aggregative stability outside the bacterial cells. These results will become the core of research in paleomagnetism and the physics of magnetic phenomena.

Currently, scientists from Germany, France, Brazil, the USA, and Japan are engaged in large-scale research of magnetotactic bacteria. The research of LETI scientists will be the first in St. Petersburg. LETI chose an interdisciplinary approach: the university formed a research team, which includes specialists in different fields – physics of magnetic phenomena, rock magnetism and magnetofossils, neurooncology, and target therapy based on nanoparticles, as well as the synthesis of composite magnetic particles based on iron oxide. That will make it possible to carry out a versatile study and obtain objective results.

“We expect to eventually complete the full cycle of research – from fermentation of MTBs in high throughput automated bioreactors of large volume and evaluation of their physical characteristics to functionalization of magnetosomes with pharmaceuticals and their laboratory tests. Thus, subject to the achievement of the set goals, for the first time in our city, there will be world-class results in this field of science.” – Kamil Gareev, Associate Professor of the Department of Micro- and Nanoelectronics of LETI, Senior Researcher of the Engineering Center for Microtechnology and Diagnostics

The next stage of studying MTBs will bring scientists closer to the practical use of structures based on bacterial magnetosomes in medicine as new tools for targeted drug delivery, hyperthermia therapy, and contrast agents for magnetic resonance imaging. “Compared to currently used structures based on synthetic iron oxide nanoparticles, bacterial magnetite has better chemical stability, high uniformity in shape and size, and, even more importantly, high biocompatibility,” commented Kamil Gareev.

LETI scientists obtained the first results of studying magnetic nanoparticles in 2013, and since then, research in this direction has continued. Until 2021, the research mainly focused on the properties of synthetic, rather than biogenic, magnetic nanoparticles, such as magnetosomes. The long-term experience allowed researchers to move on to a full-fledged study of magnetotactic bacteria and bacterial magnetosomes.

###

Media Contact
Bodak Darya
[email protected]

Original Source

https://etu.ru/en/university/news/letis-research-will-help-apply-magnetotactic-bacteria-in-oncology

Tags: cancerCardiologyClinical TrialsMedicine/HealthResearch/Development
Share13Tweet8Share2ShareShareShare2

Related Posts

Brain Biomarkers Predict Depression Treatment Success

November 18, 2025

Mapping EGFR Neighborhoods Post-Ligand Activation with MultiMap

November 18, 2025

Cultural Adaptation in Autism Services: A Study

November 18, 2025

Stable Brain Imaging of Pancreatic Islets in Mice

November 18, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    118 shares
    Share 47 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI-Driven Personalized Learning: A Comprehensive Review

Position & Breathing Techniques Cut Lung Surgery Risks

Brain Biomarkers Predict Depression Treatment Success

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.