• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Less aviation during the global lockdown had a positive impact on the climate

Bioengineer by Bioengineer
June 2, 2021
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientific study by scientists at Leipzig University, Imperial College London and the Institut Pierre-Simon Laplace in Paris

IMAGE

Credit: Katarina Werneburg

They studied the extent to which cirrus clouds caused by aircraft occurred during the global hard lockdown between March and May 2020, and compared the values with those during the same period in previous years. The study was led by Johannes Quaas, Professor of Theoretical Meteorology at Leipzig University, and has now been published in the renowned journal “Environmental Research Letters“.

Cirrus clouds, known for their high, wispy strands, contribute to warming the climate. When cirrus clouds occur naturally, large ice crystals form at an altitude of about 36 kilometres, in turn reflecting sunlight back into space – albeit to a small extent. However, they also prevent radiated heat from escaping the atmosphere, and thus have a net heating effect. This is the dominant effect in cirrus clouds.

When the weather conditions are right, condensation trails form behind aircraft. These may persist and spread to form larger cirrus clouds. In this case, their effect on the climate is much greater than that of narrow contrails alone.

The researchers led by Professor Quaas analysed satellite images of clouds in the northern hemisphere, between 27° and 68° North, in the period from March to May 2020. They then compared these with images from the same period in previous years. “Crucially, our studies reveal a clear causal relationship. Since clouds vary considerably depending on the weather, we would not have been able to detect the effects of air traffic in this way under normal circumstances. The period of lockdown due to the COVID-19 pandemic offered a unique opportunity to compare clouds in air traffic corridors at very different traffic levels.

Analysis of the data collected showed that nine per cent fewer cirrus clouds formed during the global lockdown, and that the clouds were also two per cent less dense,” said Professor Quaas. “The study clearly demonstrates that aircraft contrails lead to additional cirrus clouds and have an impact on global warming.” According to Professor Quaas, the data collected confirmed previous estimates based only on climate models: “Our study may improve the ability to simulate these effects in climate models.”

Despite the team’s findings, there has still not been enough research into the impact of aviation on global warming. A European research collaboration involving Professor Quaas’s research group is currently investigating the precise mechanisms in detail. “The tough global lockdown has been helpful in terms of our research. In order to mitigate or even avoid the warming effect on the climate, flight routes could be adapted in the future to avoid cirrus cloud formation, for example by separating flight corridors,” said the Professor of Theoretical Meteorology at Leipzig University.

###

Media Contact
Prof. Dr. Johannes Quaas
[email protected]

Related Journal Article

http://dx.doi.org/10.1088/1748-9326/abf686

Tags: Atmospheric ScienceClimate ChangeClimate ScienceEarth ScienceMeteorologyWeather/Storms
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

The humble platelet takes on an exciting new—and doubly valuable—role, science reveals

Revolutionary Titanate Nanotubes Enhance Lithium-Ion Battery Anodes

Harnessing Mitochondrial Biogenesis to Fight Acute Kidney Injury

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.