• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Less aviation during the global lockdown had a positive impact on the climate

Bioengineer by Bioengineer
June 2, 2021
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientific study by scientists at Leipzig University, Imperial College London and the Institut Pierre-Simon Laplace in Paris

IMAGE

Credit: Katarina Werneburg

They studied the extent to which cirrus clouds caused by aircraft occurred during the global hard lockdown between March and May 2020, and compared the values with those during the same period in previous years. The study was led by Johannes Quaas, Professor of Theoretical Meteorology at Leipzig University, and has now been published in the renowned journal “Environmental Research Letters“.

Cirrus clouds, known for their high, wispy strands, contribute to warming the climate. When cirrus clouds occur naturally, large ice crystals form at an altitude of about 36 kilometres, in turn reflecting sunlight back into space – albeit to a small extent. However, they also prevent radiated heat from escaping the atmosphere, and thus have a net heating effect. This is the dominant effect in cirrus clouds.

When the weather conditions are right, condensation trails form behind aircraft. These may persist and spread to form larger cirrus clouds. In this case, their effect on the climate is much greater than that of narrow contrails alone.

The researchers led by Professor Quaas analysed satellite images of clouds in the northern hemisphere, between 27° and 68° North, in the period from March to May 2020. They then compared these with images from the same period in previous years. “Crucially, our studies reveal a clear causal relationship. Since clouds vary considerably depending on the weather, we would not have been able to detect the effects of air traffic in this way under normal circumstances. The period of lockdown due to the COVID-19 pandemic offered a unique opportunity to compare clouds in air traffic corridors at very different traffic levels.

Analysis of the data collected showed that nine per cent fewer cirrus clouds formed during the global lockdown, and that the clouds were also two per cent less dense,” said Professor Quaas. “The study clearly demonstrates that aircraft contrails lead to additional cirrus clouds and have an impact on global warming.” According to Professor Quaas, the data collected confirmed previous estimates based only on climate models: “Our study may improve the ability to simulate these effects in climate models.”

Despite the team’s findings, there has still not been enough research into the impact of aviation on global warming. A European research collaboration involving Professor Quaas’s research group is currently investigating the precise mechanisms in detail. “The tough global lockdown has been helpful in terms of our research. In order to mitigate or even avoid the warming effect on the climate, flight routes could be adapted in the future to avoid cirrus cloud formation, for example by separating flight corridors,” said the Professor of Theoretical Meteorology at Leipzig University.

###

Media Contact
Prof. Dr. Johannes Quaas
[email protected]

Related Journal Article

http://dx.doi.org/10.1088/1748-9326/abf686

Tags: Atmospheric ScienceClimate ChangeClimate ScienceEarth ScienceMeteorologyWeather/Storms
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Study Reveals Mysterious ‘Ghost’ of the Australian Bush

September 5, 2025
blank

Novel Mangrove-Derived Streptomyces Reveals Biosynthetic Potential

September 5, 2025

CRISPR-Cas9 Techniques for Editing Non-Model Insects

September 5, 2025

Rapid Brain Growth Could Unlock How Humans and Marmosets Learn to Talk

September 4, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Timing Breast Milk Storage to Support Babies’ Circadian Rhythms, New Research Suggests

Scientists Cultivate Pencil-Shaped Gold “Quantum Needles” in Breakthrough Discovery

Ultra-Compact Plasmonic Nanocavity Boosts Magnetic SHG

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.