• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Legacy of brilliant young scientist is a major leap in quantum computing

Bioengineer by Bioengineer
March 7, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo courtesy of Emily Darley

Researchers from the University of Bristol and Université Libre de Bruxelles have theoretically shown how to write programs for random circuitry in quantum computers.

The breakthrough, published in the New Journal of Physics, is based on the work of first author, Dr Nick Russell, who tragically lost his life in a climbing accident last year.

"One of the many applications for random quantum circuits is the realisation of a rudimentary version of a quantum computer, known as a "boson sampler". A boson sampler could be among an early class of quantum technologies that prove their intrinsic superiority over classical machines. Such a demonstration would be a landmark in the history of science," said Dr Anthony Laing from the University of Bristol's School of Physics, who supervised Dr Russell's thesis.

The work of Dr Russell and researchers in Bristol and Brussels, has theoretically solved the problem of programming random circuitry in quantum computers.

"Most of us understand randomness in terms of the roll of a dice. Programming randomness into any machine might therefore seem like a straightforward task – simply turn any available control knobs to a random setting.

"However, because of the way quantum particles travel through their circuitry, they are affected by many control settings in a certain order. The control knobs must be carefully set according to a specific design, and finding the recipe for randomness in quantum circuitry can be especially tricky.

"With his research, Nick and the teams at Bristol and Brussels have effectively unloaded the quantum dice. By discovering how to program this randomness into circuitry, we are a step closer to creating a boson sampler, and ultimately a quantum computer.

"I'm delighted to see Nick's results published. He was a brilliant scientist. This and his other work will continue to have a significant impact on the field of quantum computing for many years to come," said Dr Laing.

###

Media Contact

Shona East
[email protected]
01-179-288-086
@BristolUni

http://www.bristol.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

September 21, 2025

TMolNet: Revolutionizing Molecular Property Prediction

September 21, 2025

NICU Families’ Stories Through Staff Perspectives

September 21, 2025

CT Scans in Kids: Cancer Risk Insights

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

TMolNet: Revolutionizing Molecular Property Prediction

NICU Families’ Stories Through Staff Perspectives

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.