• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

LED device could increase memory retention among astronauts

Bioengineer by Bioengineer
May 29, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: The University of Texas at Arlington

Hanli Liu, a professor of bioengineering at The University of Texas at Arlington, is working to improve memory and cognitive function in astronauts during space missions by directing light onto their brains.

Liu is co-primary investigator on an $800,000 NASA grant with Jacek Dmochowski, assistant professor of bioengineering at City University of New York, that will deliver a light-based technology to increase the energy available to brain cells and improve astronaut performance. UTA’s share in the grant is $321,608 for two years.

Liu researches how to use lasers to deliver near-infrared light to the human brain to detect traumatic brain injuries and symptoms of post-traumatic stress disorder. Her recent work has broadened to investigate the neurophysiological principle of non-invasive delivery of near-infrared laser light to improve human cognition. This research has led to an understanding of how light can stimulate mitochondria, which are the powerhouses within cells, into creating more oxygen in the brain to increase cerebral metabolism and mitigate memory loss.

With the new grant, Liu will investigate whether light-emitting diodes, or LED, can replace lasers as the delivery method for near-infrared light. Specifically, she will find the wavelength range and duration necessary to produce the desired effects.

In general, lasers are heavy and bulky and would take too much space in the cramped quarters of a spacecraft or space station. LEDs are lighter and smaller and could be attached to a headband or similar device more easily stowed. Also, light delivered by LED is safer to human eyes than light from lasers.

LED light in the red and near-infrared range is already in widespread use for relieving pain and treating acne, although few researchers have rigorously investigated its feasibility and limitation for boosting and stimulating brain metabolism.

“Researchers have evidence that memory can be improved right after shining light on specific areas of the human brain for eight to 10 minutes,” Liu said. “We are trying to demonstrate that if we can increase power in LEDs within safe levels, we can make LED light reach the cortex, just like a laser, but safer, smaller, easier and more portable to use.”

Liu’s research is an example of health and the human condition and data-driven discovery, two themes of UTA’s Strategic Plan 2020: Bold Solutions | Global Impact, said Michael Cho, chair of the Bioengineering Department.

“Workplace pressure is difficult to deal with on Earth, but adding the stressors of an environment such as space can have negative effects and impacts on performance and memory,” Cho said. “Dr. Liu’s research has made important strides in this area, and if she is successful, her work on this new grant could be a crucial component of long-duration space exploration.”

Liu’s recent technology-based research and development is related to non-invasive transcranial infrared brain stimulations, or TIBS, In 2016, she led a team that published groundbreaking research in Nature’s Scientific Reports that explained the underlying principle of TIBS, followed by another high-impact article in the Journal of Cerebral Blood Flow and Metabolism. This publication has provided the first demonstration that TIBS can significantly improve metabolic activity, blood flow and blood oxygenation in the human brain.

She also teamed with Alexa Smith-Osborne, a retired UTA associate professor of social work, and used functional near-infrared spectroscopy to map brain activity responses during cognitive task performance related to digit learning and memory retrial. This optical mapping method permits neural scientists and/or clinicians to “see” where memory fails within the brain among student veterans with post-traumatic stress disorder.

###

Media Contact
Dana Jennings
[email protected]

Original Source

https://www.uta.edu/news/releases/2019/05/liu-astronaut-memory.php

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyExperiments in SpaceMedicine/HealthneurobiologyNeurochemistryResearch/DevelopmentSatellite Missions/Shuttles
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

GBLUP vs. WGBLUP: Genomic Selection in Beef Cattle

December 21, 2025
blank

Anopheles gambiae Habitat and Public Health in Osun

December 21, 2025

Genetic Insights into Aedes aegypti Expansion in California

December 21, 2025

Autophagy and HSP70 Drive Mytilus Thermal Stress Adaptation

December 20, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Gastric Healing: Pistacia Lentiscus Leaf Extract

BAF155 Drives Brain Myelination, Autism Behaviors in Mice

TMEM120A Regulates Fat Lipids via ER CoA Channel

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.