• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Learning to help the adaptive immune system

Bioengineer by Bioengineer
March 10, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Institute of Industrial Science, the University of Tokyo

Tokyo, Japan – Scientists from the Institute of Industrial Science at The University of Tokyo demonstrated how the adaptive immune system uses a method similar to reinforcement learning to control the immune reaction to repeat infections. This work may lead to significant improvements in vaccine development and interventions to boost the immune system.

In the human body, the adaptive immune system fights germs by remembering previous infections so it can respond quickly if the same pathogens return. This complex process depends on the cooperation of many cell types. Among these are T helpers, which assist by coordinating the response of other parts of the immune system–called effector cells–such as T killer and B cells. When an invading pathogen is detected, antigen presenting cells bring an identifying piece of the germ to a T cell. Certain T cells become activated and multiply many times in a process known as clonal selection. These clones then marshal a particular set of effector cells to battle the germs. Although the immune system has been extensively studied for decades, the “algorithm” used by T cells to optimize the response to threats is largely unknown.

Now, scientists at The University of Tokyo have used an artificial intelligence framework to show that the number of T helpers act like the “hidden layer” between inputs and outputs in an artificial neural network commonly used in adaptive learning. In this case, the antigens presented are the inputs, and the responding effector immune cells are the output.

“Just as a neural network can be trained in machine learning, we believe the immune network can reflect associations between antigen patterns and the effective responses to pathogens,” first author Takuya Kato says.

The main difference between the adaptive immune system compared with computer machine learning is that only the number of T helper cells of each type can be varied, as opposed to the connection weights between nodes in each layer. The team used computer simulations to predict the distribution of T cell abundances after undergoing adaptive learning. These values were found to agree with experimental data based on the genetic sequencing of actual T helper cells.

“Our theoretical framework may completely change our understanding of adaptive immunity as a real learning system,” says co-author Tetsuya Kobayashi. “This research can shed light on other complex adaptive systems, as well as ways to optimize vaccines to evoke a stronger immune response.”

###

The work is published in Physical Review Research as “Understanding Adaptive Immune System as Reinforcement Learning.” (DOI: 10.1103/PhysRevResearch.3.013222).

About Institute of Industrial Science, the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and realworld applications.

Media Contact
Tetsuya J. Kobayashi
[email protected]

Original Source

https://www.iis.u-tokyo.ac.jp/en/news/3503/

Related Journal Article

http://dx.doi.org/10.1103/PhysRevResearch.3.013222

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyComputer ScienceIndustrial Engineering/ChemistryNanotechnology/MicromachinesResearch/DevelopmentRobotry/Artificial IntelligenceSoftware EngineeringTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

Chung-Ang University Researchers Innovate Interlayer Material to Enhance Lithium-Sulfur Battery Performance

Chung-Ang University Researchers Innovate Interlayer Material to Enhance Lithium-Sulfur Battery Performance

November 6, 2025
blank

Scientists Discover Temperature’s Key Role in RhRu₃Ox Performance During Acidic Water Oxidation

November 6, 2025

Breakthrough Hyperspectral Camera Captures First Precise Altitude Map of Blue Aurora

November 6, 2025

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Adalimumab Immunogenicity in Noninfectious Uveitis Patients

Revolutionizing Protein Production from Food Waste

New Ethanolamine Azole Derivatives Target UC Pathways

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 68 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.