• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Learning how one element–zinc–helps millions of nerve cells communicate

Bioengineer by Bioengineer
August 26, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Aira Burkhart/West Virginia University

Zinc isn’t just an ingredient in the lozenges you might take when you feel a cold coming on. It’s also crucial to communication among the neurons–or nerve cells–in your brain, whether those neurons are helping you remember what lozenges to buy or eavesdrop on a conversation in the next pharmacy aisle.

According to Charles Anderson–a researcher with the West Virginia University Rockefeller Neuroscience Institute–scientists have known for over half a century that charged zinc atoms have something to do with neuronal chatter. But with a new grant from the National Institutes of Health, Anderson will work to pinpoint exactly what zinc does, and how it does it.

The National Institute of General Medical Sciences–a division of NIH–has awarded him nearly $1.9 million for the effort.

“One of the mysteries of neuroscience is, how is information processed through these massive interconnected circuits of neurons?” said Anderson, an assistant professor of neuroscience in the School of Medicine. “It turns out, zinc ions are one of the signaling systems that neurons use. Zinc is released from one cell, and it binds to receptors on another cell, which is what a neurotransmitter does. And it’s taken us a long time to figure that out.”

He and his colleagues will focus on the role zinc plays in our brain’s ability to make sense of the sounds that surround us. Using “various tricks of genetics,” they will turn off a zinc-transporter gene that’s important to zinc signaling in a group of animal models. Then they’ll compare how neural circuits in the experimental group differ from those in a control group of typical animals.

He’ll also use sensors to track activity in the neurons of live animal models. The more two neurons communicate with each other, the more they will glow on a special fluorescent image that the researchers can scrutinize.

“They flash,” Anderson said. “So you can look at a field of view, and you see this lightning storm. The brighter the flash, the more the neuron is firing, and the more a neuron fires, the more it’s encoding that particular feature in the environment.”

By chasing these “storms” across the brains of animal models in both groups, the researchers will learn more about how zinc influences the function of neural circuits.

What they discover can reveal the inner workings of the auditory cortex, a part of the brain that processes sound.

Processing sound is far from straightforward. The brain doesn’t just receive information from the ear and give it meaning. It also sends information back toward the ear, instructing the neurons between the eardrum and the brain to amplify some sounds (an intriguing conversation one aisle over) and dampen others (the soft pop music that the pharmacy plays).

“It’s called the cocktail-party effect, where you can focus on someone’s voice and pull it out of the noise of a bunch of speakers,” Anderson said. “Ten people can be talking, and you can focus on one of them. But that ability is not well understood.”

The researchers’ findings won’t just relate to hearing in general or the cocktail-party effect in particular. They might also apply to auditory hallucinations and the symptoms of various dementias.

“A number of recent studies now suggest that changes in specific zinc transporters are linked with major neurological disorders, such as schizophrenia and Alzheimer’s disease,” said Randy Nelson, who chairs the Department of Neuroscience and directs basic science research at RNI.

“The goal is to understand the function of specific zinc transport proteins in the brain and create novel tools to modulate them,” he said.

The more scientists know about zinc’s relation to schizophrenia, Alzheimer’s disease and other conditions, the better equipped they’ll be to develop new treatments for them.

“What we want to know is, what is zinc doing, and how important is it?” Anderson said. “I think it’s very important, and I think it’s doing a lot. The more we understand about it, the more avenues we open to understand how the brain works.”

###

Research reported in this publication was supported by the National Institute of General Medical Sciences, a division of the National Institutes of Health, under Award Number R35GM138023. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH.

Media Contact
Marisa Sayre
[email protected]

Original Source

https://wvutoday.wvu.edu/stories/2020/08/26/learning-how-one-element-zinc-helps-millions-of-nerve-cells-communicate

Tags: AlzheimerMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

MDMA Therapy for Eating Disorders: Insights and Future

December 30, 2025

E2F8 Boosts DTL, Driving Endometrial Cancer via MAPK

December 30, 2025

Brain Imaging Insights in Early-Onset Precocious Puberty

December 30, 2025

Self-Efficacy and Identity Predict Spiritual Care Competence

December 30, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI: Innovating Sustainable Energy and Environmental Solutions

MDMA Therapy for Eating Disorders: Insights and Future

Micro- and Nanoplastics’ Toxicity in COPD Cells

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.