• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Lead white pigments on Andean drinking vessels provide new historical context

Bioengineer by Bioengineer
July 27, 2020
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Isotope analysis suggest clues to the manufacture and distribution of qeros

IMAGE

Credit: Alyson Thibodeau

(Carlisle, Pa.) – Researchers studying lead white pigments on Andean ceremonial drinking vessels known as qeros have found new similarities among these artifacts that could help museums, conservators, historians and scholars better understand the timeline and production of these culturally significant items during the colonial period (1532-1821). In a study published in the journal Heritage Science, researchers used isotope measurements of lead white pigments in the decorative patterns on 20 colonial qeros to reveal linkages among vessels that were unknown previously.

The analysis identified only three isotope signatures among the lead white pigments decorating the qeros. Two of these isotopic signatures, present on a total of eight qeros, are the same as found in lead white paints used in European artwork from the same period. This match suggests these qeros are decorated with pigments imported to the Andes from Europe. The third signature, found on 12 of the qeros, suggests that the lead white was manufactured locally in the Andes.

The analysis was carried out by Allison Curley, a former Dickinson College undergraduate who is now a graduate student in earth & environmental sciences at the University of Michigan, and her mentor, geochemist Alyson Thibodeau, assistant professor of earth sciences at Dickinson, along with a team of researchers from the Smithsonian National Museum of the American Indian; the Metropolitan Museum of Art; the UCLA/Getty Program in Conservation of Archaeological and Ethnographic Materials; and the American Museum of Natural History.

“Little is known about the history of colonial qeros now in museum or private collections. The results could lead to a better understanding of the objects’ chronology and production,” explained Thibodeau. “For example, it is possible that qeros made earlier in the colonial period are decorated with European lead white, while qeros made later are decorated with lead white made from Andean ores. Further, the results strongly suggest some form of centralization in pigment acquisition, manufacture and distribution in the colonial period.”

“The consistency of the data was both surprising and satisfying,” said Curley, who has been collaborating with Thibodeau on this project since 2017. “It is exciting to see geochemistry provide insights into some longstanding historical and archaeological questions, and I was absolutely thrilled to present these findings to the Society for American Archaeology and to the conservators at the Smithsonian.”

“It’s important for those studying qeros all over the world to have a better understanding of the Andean people who made and used qeros during a time of colonial rule,” said Emily Kaplan, conservator for the Smithsonian National Museum of the American Indian, which has the largest collection of qeros in the United States. Kaplan hopes the research will lead to more radiocarbon dating, which will reveal more about the chronology of qero production. “Style and iconography have been used to help establish production timelines, but there’s a lot of guesswork involved,” she said.

Ceremonial drinking vessels have been used for toasting rituals in the Andes for millennia. Wooden qeros made in the colonial period were typically fabricated in identical pairs to make ceremonial toasts for social, political and religious occasions. These items retain their cultural significance to this day and are recognized as a symbol of the Inka Empire. Because they provide a window into the Andean indigenous colonial experience, qeros have been studied by art historians, archaeologists and anthropologists.

###

The study, “Isotopic composition of lead white pigments on qeros: implications for the chronology and production of Andean ritual drinking vessels during the colonial era,” is available online and is included in the Heritage Science collection, “Pigments, dyes, and colors in Latin American archaeometric investigations.”

About Dickinson College

Dickinson is a nationally recognized liberal-arts college chartered in 1783 in Carlisle, Pa. The highly selective college is home to 2,300 students from across the nation and around the world. Defining characteristics of a Dickinson education include a focus on global education–at home and abroad–and study of the environment and sustainability, which is integrated into the curriculum and the campus and exemplifies the college’s commitment to providing an education for the common good. http://www.dickinson.edu

Media Contact
Christine Baksi
[email protected]

Related Journal Article

http://dx.doi.org/10.1186/s40494-020-00408-w

Tags: AnthropologyArchaeologyChemistry/Physics/Materials SciencesEarth ScienceGeophysicsHistoryNew World
Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025
Please login to join discussion

POPULAR NEWS

  • Zheng-Rong Lu

    Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    75 shares
    Share 30 Tweet 19
  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    72 shares
    Share 29 Tweet 18
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    69 shares
    Share 28 Tweet 17
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ChatGPT’s Potential in Stated-Calorie Diet Planning

Key Amino Acid Changes Attenuate Yellow Fever Vaccine

Giardia Triggers Type 2 Immunity That Reduces Gut Inflammation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.