• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Lattice distortion of perovskite quantum dots induces coherent quantum beating

Bioengineer by Bioengineer
September 9, 2022
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research group led by Prof. WU Kaifeng from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS), in collaboration with Dr. Peter C. Sercel from the Center for Hybrid Organic Inorganic Semiconductors for Energy, recently reported the utilization of lattice distortion in lead halide perovskite quantum dots (QDs) to control their exciton fine structure.

Lattice distortion of perovskite quantum dots induces coherent quantum beating

Credit: DICP

A research group led by Prof. WU Kaifeng from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS), in collaboration with Dr. Peter C. Sercel from the Center for Hybrid Organic Inorganic Semiconductors for Energy, recently reported the utilization of lattice distortion in lead halide perovskite quantum dots (QDs) to control their exciton fine structure.

The study was published in Nature Materials on Sept. 8.

It is well known that shape or crystal anisotropy in QDs, which are tiny semiconductor nanoparticles, results in energy splitting of their optically bright excitons (bound electron-hole pairs), known as fine structure splitting (FSS). These excitons form an important playground for quantum information science. For example, the excitons’ FSS can be exploited for coherent control of quantum states for quantum computing, or for polarization-entangled photon-pairs in quantum optics, although for the latter it is important to suppress the magnitude of splitting.

Traditionally, studying FSS usually requires single or just a few QDs at liquid-helium temperature, because of its sensitivity to QD size and shape. Measuring FSS at an ensemble-level, let alone controlling it, seems impossible unless all the dots are made to be nearly identical.

In this study, by using ensemble-level femtosecond polarized transient absorption, the researchers observed clear bright-exciton FSS in solution-processed CsPbI3 perovskite QDs, which is manifested as exciton quantum beats (periodic oscillations of kinetic traces).

“Even more amazingly, the beat frequency, as determined by the FSS energy, of a given sample can be continuously controlled by changing the temperature. This is an unprecedented result, meaning that now scientists can facilely control FSS through temperature,” said Prof. WU.

The researchers also found that the temperature-dependent FSS was related to the interesting, highly-dynamic lattice of lead halide perovskites. Lowering the temperature led to a more distorted lead-iodide octahedral framework.

Calculations indicated that, because these orthorhombic-phase QDs were actually still bounded by the pseudocubic family of crystal planes, the lattice distortion results in an avoided crossing fine-structure gap between bright exciton. This gap was responsible for the observed FSS, and it could be detected in spite of QD size and shape heterogeneity across an ensemble sample.

“Lattice distortion in CsPbI3 perovskites is well known in the photovoltaic community, as it is connected to the issue of phase stability of perovskite solar cells, but nobody has previously connected it experimentally to the exciton fine structure” said Prof. WU. “Our study demonstrates that this material property can actually be harnessed to control the bright-exciton splitting in quantum dots for quantum information technologies.”



Journal

Nature Materials

DOI

10.1038/s41563-022-01349-4

Method of Research

Commentary/editorial

Subject of Research

Not applicable

Article Title

Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots

Article Publication Date

8-Sep-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Creating Something from Nothing: Physicists Simulate Vacuum Tunneling in a Two-Dimensional Superfluid

Creating Something from Nothing: Physicists Simulate Vacuum Tunneling in a Two-Dimensional Superfluid

September 1, 2025

Chain Recognition Advances Head–Tail Carboboration of Alkenes

September 1, 2025

Solar Orbiter Tracks Ultrafast Electrons Back to the Sun

September 1, 2025

Innovative Pimple Patches Offer Effective Solution for Stubborn Acne

August 29, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel ADC Targets Fucosyl-GM1 in Lung Cancer

AI-Powered Adaptive Tutoring for Moodle: A Breakthrough

Ethiopia’s Electronic Health System: Status and Opportunities

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.