• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Largest aerospace society names Sandia researcher ‘Engineer of the Year’

Bioengineer by Bioengineer
June 2, 2021
in Science News
Reading Time: 5 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

‘Jack-of-all-trades’ improves future spacefaring calculations

IMAGE

Credit: Photo by Lonnie Anderson, courtesy Sandia National Laboratories

ALBUQUERQUE, NM — Humberto “Tito” Silva III, a Sandia National Laboratories researcher, has been named Engineer of the Year by the American Institute of Aeronautics and Astronautics, the world’s largest aerospace technical society,

Selected by a committee of his peers, Silva was cited for improving failure-rate predictions of aerospace flight systems as they reenter Earth’s atmosphere. The work helps direct engineers to attack the worst problems first for reentry rockets, spaceships and satellites.

Silva’s procedure, which he has dubbed “Tito’s full-circle analysis methodology,” uses computer modeling to determine the fewest number of computer simulations and physical experiments needed to get trusted data on a project.

“We were able to have high statistical confidence in our results. These were analogous to those achieved by researchers using many orders of magnitude more computational simulations and physical experiments,” Silva said. “Our method saves money and time.”

AIAA president Basil Hassan, who is also the deputy chief research officer at Sandia, said, “Tito’s work helps ensure the safety, security and reliability of the nuclear deterrent by helping to understand potential uncertainties in extreme thermal environments. The methodologies developed here could also be used for other entry and reentry-type applications that similarly concern engineers.”

Silva’s award will be presented in August at the AIAA Aerospace Spotlight Awards Gala, an annual event the organization describes as “recognizing the most influential and inspiring individuals in aerospace.”

Succeeding with failure

Silva credits his unusually varied background, which includes study in several engineering and science fields, for endowing him with a jack-of-all-trades outlook that connects with the deeper perspective of researchers who self-confine to particular research areas.

“Many scientists deep-dive into subfields,” he said. “My bread-and-butter is that I bring a different perspective. Technical experts fill in my knowledge gaps, and I fill in ones they haven’t thought of.” He describes himself as an “inside consultant,” bridging subcategories in computer science, project management, and aerospace, mechanical, chemical and electrical engineering.

Acting as a catalyst in a variety of fields doesn’t blur his research focus, which is thermal science — “pretty much the jell for all the work I’ve done,” he said.

His teams feed data from modeling and physical experiments — limited in number to keep costs down — into computer models expected to simulate the actual effects. Results from the models are then used in experiments to see how derived data matches that from physically harvested data.

The work often shows considerable overlap between theory-based and experimental graphs, which lends weight to Silva’s failure-rate predictions.

Super-sleuthing the cosmos

Working from an Earth-bound lab, Silva doesn’t minimize the difficulty of determining events in outer space. The sleuth-like deductions are similar, he says, “to determining why an iPhone thermally or electrically fails in a box, if the box is in a closet, the closet in a room, the room in a building, the building on a barge in the hold of an aircraft carrier …”

His first move is to simulate the environment, including the season of the year and time of day.

Then, there’s the equipment. “If the reentry body is made partly of stainless steel, we think we know its thermal conductivity. But there’s material variability from different factories, so we have uncertainty in how that affects our vehicle. So, we use a range of possible figures,” he said.

Solving questions about a particular system entering Earth’s atmosphere, subspecialists were needed to find the sweet spot between different forms of heat transfer. “So, we did a computational experiment on how to use all the test equipment most frugally. We needed to determine the optimum amount of experiments and computer simulations, so we weren’t running, say, 5 million computer simulations and 5,000 experiments.”

Using these deliberately limited means, his team found a way to map the probability space of all possible outcomes. “Then we found a condition with our model that stressed the system. We used that in the computer domain and then again in the experimental domain in an iterative fashion. That gave us our result.”

Said Darcie Farrow, a former systems engineer overseeing nuclear weapon sustainment, “The multiple technical advances initiated by Tito are improving nuclear safety assessments as well as aerodynamic models for a wide range of flight systems.”

Silva also has initiated collaborations with Los Alamos National Laboratory resulting in nuclear weapon system models that capture the response of both labs’ components in fire environments for the first time, she said.

A peaceful past and stimulating future

Belying the future complexity of his work, Silva grew up in the visually simple farming country around El Paso, Texas. There were no big buildings; he could see for miles.

The open fields contributed to his interest in outer space, he says: “It’s easy to dream about the stars, growing up with only cotton fields in your backyard.”

But his life grew more complicated when he left astrophysics as he started graduate school: “At the time, there was too much uncertainty in [astrophysics],” he said. “You couldn’t experimentally prove that there is such a thing as black hole — or, at least, back then there wasn’t any experimental or tangible proof as there is now.”

The space shuttle Columbia disaster in early February 2003 got him back into studying space — specifically, aerospace engineering — to finish his graduate school education. Silva said he “saw it in real time across the sky” as he was driving across Texas.

The emotional impact of the sight, reinforced by Texas radio stations’ repeated playing of Stevie Ray Vaughan’s song “The Sky is Crying,” created a memory that he feels forged his future path.

“I knew then,” he said, “that I wanted to apply uncertainty quantification to safety-driven problems and that aerospace engineering was a perfect field for that application. It was like a homecoming for me … coming back to what I always loved.”

The earlier disaster of the space shuttle Challenger was Silva’s initial propellant into thoughts of aerospace. “The memory of watching that disaster — also in real time with my principal and my classmates while in school — left a huge impression on me as a young boy.”

He maintains his interest in a number of academic fields in which he still takes classes and teaches to this day, he said.

But in Silva’s life, he said, “It’s clear that aerospace tragedies have had their way with my destiny.”

###

Sandia National Laboratories is a multimission laboratory operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration. Sandia Labs has major research and development responsibilities in nuclear deterrence, global security, defense, energy technologies and economic competitiveness, with main facilities in Albuquerque, New Mexico, and Livermore, California.

Sandia news media contact: Neal Singer, [email protected], 505-977-7255

Media Contact
Neal Singer
[email protected]

Tags: AstronomyAstrophysicsComputer ScienceExperiments in SpaceResearch/DevelopmentSatellite Missions/ShuttlesSpace/Planetary ScienceVehiclesWeaponry
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

AI Diagnoses Structural Heart Disease via ECG

July 17, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Shape-Shifting Biphasic Liquids with Bistable Microdomains

July 17, 2025

Functional Regimes Shape Soil Microbiome Response

July 17, 2025
Please login to join discussion

POPULAR NEWS

  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Diagnoses Structural Heart Disease via ECG

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

Shape-Shifting Biphasic Liquids with Bistable Microdomains

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.