• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Lactate reveals all about its antidepressant prowess

Bioengineer by Bioengineer
May 27, 2021
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Neuroscientists at Synapsy have identified the mechanism behind the antidepressant effect of lactate, a molecule produced by the body during exercise. Its key features – NADH and neurogenesis – will pave the way for new treatment possibilities.

IMAGE

Credit: © UNIL-CHUV- Carron / Toni

Depression is the leading cause of disability worldwide. Neuroscientists from Synapsy – the Swiss National Centre of Competence in Research into Mental Illness – based at Lausanne University Hospital (CHUV) and Lausanne University (UNIL) have recently demonstrated that lactate, a molecule produced by the body during exercise, has an antidepressant effect in mice. Lactate is best known for the pivotal role it plays in the nutrition of neurons inside the brain. Yet it can also counter the inhibition of the survival and proliferation of new neurons, a loss seen in patients suffering from depression and in stressed animal. Furthermore, the research team pinpointed NADH as a vital component in the mechanism: this is a molecule with antioxidant properties that is derived from the metabolism of lactate. The findings, published in the scientific journal Molecular Psychiatry, provide a better understanding of the physiological mechanisms that underpin physical activity, which should lead to an improvement in the way depression is treated in the future.

WHO recognises depression – which affects nearly 264 million people – as the leading cause of disability worldwide. Treatments based on antidepressants and psychotherapy are available to help people suffering from the disorder. Yet, as Jean-Luc Martin, senior lecturer and researcher at CHUV’s Centre for Psychiatric Neurosciences (CNP) and UNIL, Synapsy member and co-director of the study together with Professor Pierre Magistretti, points out: “Around 30% of people with depression don’t respond to antidepressants.” At the same time, the antidepressant effects of physical activity have been known for many years, even though the scientific community has struggled to figure out the molecular mechanisms involved.

Exercise and lactate: united against depression

During its previous investigations, the laboratory led by Dr Martin focused on lactate – a molecule produced during physical exercise – in an attempt to explain the benefits of sport. The researchers observed the antidepressant action of lactate when administered to mice at doses comparable to those found during physical activity. As the Vaud-based neuroscientist continues: “Lactate decreases anhedonia in particular, one of the main symptoms of depression, which involves losing interest or pleasure in all those activities which, prior to depression, were considered enjoyable”.

Giving birth to new neurons

The CNP team was keen to delve deeper and understand how lactate acts on the brain to counter depression. They focused on adult neurogenesis in the hippocampus, a region of the brain that plays a role in memory and depression. “Adult neurogenesis is the term used for the production of new neurons in adulthood from brain stem cells”, points out Dr Martin. “Its core purpose is to replace neurons, and it’s known to be impaired in depressive patients, when it contributes to the reduction in the volume of the hippocampus observed in some individuals”. With the help of his fellow researchers, Dr Martin was able to show that lactate restores neurogenesis and lowers depressive behaviour in mice. Conversely, without neurogenesis, lactate loses its antidepressant power, indicating that the two are intimately linked.

A key trio

But this does not tell us anything about the mechanism by which lactate regulates neurogenesis. Accordingly, the researchers studied its metabolism: in other words, all the cellular chemical reactions relating to it. Lactate is largely derived from the breakdown of glucose from food, and is then oxidised to pyruvate. Anthony Carrard, a biologist at CNP and the study’s lead investigator, explains: “We logically tested pyruvate on neurogenesis, without success. So, we said to ourselves that the answer had to be found in the conversion of lactate to pyruvate”.

During conversion of lactate to pyruvate, cells produce a molecule with antioxidant potential, known as NADH. As Dr Carrard continues: “It’s NADH and its antioxidant properties that protect neurogenesis during a depressive episode – or at least during a modelling of some of these symptoms in animals”. In conclusion, the researcher adds: “This mechanism could explain the link between sport and depression, understanding that further experiments are still needed to demonstrate it. Importantly, it offers potential targets for devising future treatments. To do this, we’re first going to identify the proteins on which the NADH factor acts”.

###

Media Contact
Jean-Luc Martin
[email protected]

Original Source

https://nccr-synapsy.ch/news/13140/

Related Journal Article

http://dx.doi.org/10.1038/s41380-021-01122-0

Tags: Cell BiologyMedicine/HealthMolecular BiologyneurobiologyNutrition/NutrientsPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Epicardial Fat: Protector or Threat to Heart Health?

July 26, 2025
blank

Glymphatic Asymmetry Linked to Parkinson’s Onset Side

July 26, 2025

Theta Stimulation Boosts Conflict Resolution in Parkinson’s

July 26, 2025

Faecal Transplants Show Safety in Parkinson’s Pilot

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    50 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.