• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Lab develops novel approach to study sound recognition in acoustically orienting animals

Bioengineer by Bioengineer
September 20, 2019
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The St. Olaf College team’s findings on song recognition in the fly Ormia ochracea are part of special on ‘How Enemies Shape Communication Systems’ published in the journal ‘Frontiers in Ecology and Evolution’

IMAGE

Credit: Norman Lee

NORTHFIELD, Minn. — If you wander outside on these late summer nights, you might hear the din of calling songs from field crickets. Male crickets produce these songs to attract their mates — but they may also draw the attention of acoustically orienting parasitiod flies. The fly Ormia ochracea has evolved directionally sensitive ears to eavesdrop on the communication signals of field crickets. Crickets that are parasitized by these flies face almost certain death. How these flies recognize cricket songs and whether crickets can change their love songs to avoid parasitism is unknown.

A new study by Dr. Norman Lee, in collaboration with St. Olaf College students Alexander Kirtley ’19, Isaiah Pressman ’19, and Karina (Kari) Jirik ’20, and University of Toronto collaborators Dean Koucoulas and Dr. Andrew C. Mason, show a novel approach that can be used to study song recognition in O. ochracea. Their work is published as part of a special research topic called “How Enemies Shape Communication Systems: Sensory Strategies of Prey to Avoid Eavesdropping Predators and Parasites” featured in Frontiers in Ecology and Evolution.

This approach relies on using a newly developed performance index and a treadmill system to measure how well flies respond to different cricket songs.

“This is an exciting advance because the approach can be broadly applied to better understand the sensory basis of song recognition, signal discrimination, learning and memory, and other auditory perceptual phenomenon in eavesdropping enemies,” says Lee, an assistant professor of biology at St. Olaf. “This, in turn, will allow us to evaluate the effectiveness of behavioral strategies and the design of communication signals that prey or hosts may take to mitigate the risk of death.”

The Lee Lab Neural Systems and Behavior at St. Olaf College will apply this new approach to unravel how different geographic populations of O. ochracea have evolved to recognize and prefer species-specific cricket songs that mainly differ in the temporal patterning of sound pulses. Temporal pattern recognition is a common sensory processing task shared by many animals that communicate with acoustic signals, including human speech. Studying temporal pattern recognition in O. ochracea may provide insights into general auditory system function involved in signal recognition.

Lee believes that his research into O. ochracea hearing can be harnessed to help improve human hearing by providing engineers with insights into how the natural world has solved common hearing challenges such as recognizing temporally patterned sounds. Engineers have relied on biomimicry to design miniature microphones based on O. ochracea ears, with the hope of applying these microphones to create directional hearing aids.

“Understanding the signal features that auditory systems have evolved to assess to recognize salient sounds may help engineers improve signal processing strategies implemented in hearing aid technology,” Lee says.

###

Media Contact
Kari VanDerVeen
[email protected]

Related Journal Article

http://dx.doi.org/10.3389/fevo.2019.00334

Tags: BiologyBiotechnologyHearing/SpeechneurobiologyResearch/DevelopmentTechnology/Engineering/Computer ScienceZoology/Veterinary Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Deregulation of NKX3.1 and AURKA in Prostate Cancer

November 10, 2025

Sphingolipid Metabolism: A Target in Triple-Negative Breast Cancer

November 10, 2025

New Study Empowers Eczema Patients to Decide Their Own Bathing Frequency

November 10, 2025

Despite Interventions, Children’s Dental Health Remains Poor

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

miR-770-5p Regulates KLF4/EGFR via PRMT5

New Genomic Tools Boost European Flax Breeding

BM-MSC Exosomes Modulate TUG1, Fight Leukemia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.