• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, March 8, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Lab cell study shows that HOXA5 protein acts as tumor suppressor in breast cancer

Bioengineer by Bioengineer
May 20, 2016
in Cancer
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Many breast cancers are marked by a lack of HOXA5 protein, a gene product known to control cell differentiation and death, and lower levels of the protein correspond to poorer outcomes for patients. Now, results of a new study by Johns Hopkins Kimmel Cancer Center scientists suggests a powerful role for the protein in normal breast cells, acting as a tumor suppressor that halts abnormal cell growth.

In their study published online May 9 in the journal Oncogene, scientist Saraswati Sukumar, Ph.D.; her graduate student Wei Wen Teo; and their colleagues show that cells without HOXA5 have an increased capacity to renew themselves and are more invasive than normal breast cells — in short, they become more tumor like.

“Learning more about the biological impact of the HOXA5 protein, which is absent so frequently in breast cancers, may eventually help scientists develop new therapies to treat this disease,” says Sukumar.

The loss of HOXA5 leads to an increase in breast cells’ “stemness and cell plasticity,” meaning they can more easily revert back to an undifferentiated state where they are capable of producing more new cells, says Sukumar, a professor of oncology and pathology at the Johns Hopkins University School of Medicine. Proteins that “promote features of plasticity will allow a tumor to thrive better,” she adds.

For the study, the researchers analyzed gene expression from human breast cell lines lacking HOXA5. They found that the protein seems to help maintain several traits in normal breast cells, including the ability to adhere to other epithelial cells, and the presence of molecules marking the cells as differentiated and not capable of self-renewal like breast stem cells.

When Sukumar and the others depleted the HOXA5 protein in other breast cell lines in the lab, the cells became more immature, or “stem like,” as well as more mobile. A closer look, she says, revealed that HOXA5 regulates the production of two other proteins: CD24 and E-cadherin. Without CD24, the cells begin to revert toward a stem like state, and without E-cadherin, cells lose some of the “glue” that binds them to other cells, says Sukumar.

As a result, breast cells without HOXA5 were more likely to grow aggressively in lab experiments, forming protruding structures similar to those seen as tumor cells begin to metastasize, the scientists found.

They then tested the behavior of human tumor cells with and without HOXA5 by injecting those cells into the mammary fat pad of mice. Results showed that tumor cells containing the protein carried anywhere from 10 to 17 times fewer breast stem cells, and tumors grown from the injected cells were about three times smaller than those in mice who had received tumor cells with depleted levels of HOXA5.

Sukumar and her colleagues also analyzed data from two international breast cancer genetic data sets and found that the lower the amount of HOXA5 in a tumor, the higher the grade of breast cancer in the patient. Similarly, patients with tumors containing low amounts of HOXA5 protein also had lower cancer relapse-free survival rates.

The scientists are planning further study of HOXA5’s role in breast cancer, following up on this work and a study published by Sukumar’s lab in 2000 that showed a connection between low levels of HOXA5 and the well-known tumor suppressor protein p53. Sukumar, who is the Barbara B. Rubenstein Professor in Oncology at the Kimmel Cancer Center, recently won a $300,000 grant from the Avon Foundation to continue the work.

###

Other Johns Hopkins scientists who contributed to the study include Vanessa F. Merino, Soonweng Cho, Preethi Korangath, Xiaohui Liang, Ren-chin Wu, Neil M. Neumann, and Andrew J. Ewald.

Funding for the study was provided by the Susan G. Komen Foundation Leadership Grant (SAC110050), the Department of Defense Center of Excellence (W81XWH-04-1-0595), the SKCCC Core grant (P30 CA006973) and the Avon Foundation Center of Excellence.

Media Contact

Vanessa Wasta
[email protected]
410-614-2916
@HopkinsMedicine

http://www.hopkinsmedicine.org

The post Lab cell study shows that HOXA5 protein acts as tumor suppressor in breast cancer appeared first on Scienmag.

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Engineered ‘off the shelf’ stem cells target breast cancer that metastasizes to the brain

March 5, 2021
IMAGE

Cancer ‘guardian’ breaks bad with one switch

March 4, 2021

Engineered safety switch curbs severe side effects of CAR-T immunotherapy

March 4, 2021

HKBU develops dual-targeting drug for EBV-related cancers

March 2, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    694 shares
    Share 278 Tweet 174
  • People living with HIV face premature heart disease and barriers to care

    86 shares
    Share 34 Tweet 22
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyEcology/EnvironmentMaterialsMedicine/HealthClimate ChangePublic HealthCell BiologyInfectious/Emerging DiseasescancerGeneticsTechnology/Engineering/Computer ScienceChemistry/Physics/Materials Sciences

Recent Posts

  • Helping people understand glaucoma with a mobile app
  • Virtual avatar coaching with community context for adult-child dyads
  • New Lancet series shows mixed progress on maternal and child undernutrition in last decade
  • “Magic sand” might help us understand the physics of granular matter
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In