• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Kent State ecologist part of global collaboration to answer global change questions

Bioengineer by Bioengineer
January 11, 2019
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kent State University


Kent State Ecologist Part of Global Collaboration to Answer Pressing Questions About Global Change

The work of 153 ecological researchers from 40 countries, including Kent State University Assistant Professor Dave Costello, Ph.D., from the Department of Biological Sciences in the College of Arts and Sciences, has revealed new findings on the effect of climatic factors on river-based ecosystems. The findings are published in the latest issue of the journal Science Advances.

“This is the largest such study, with respect to spatial coverage, and allows us to study carbon cycling in streams at unprecedented global scales,” said Dr. Costello, who serves as second author on this paper. “We are able to show how different biomes – large naturally occurring communities of flora and fauna occupying a major habitat, like forests, deserts and tundras – decompose organic material into carbon dioxide and draw conclusions about the susceptibility of these ecosystems to rising global temperatures.”

The study found that climatic factors, such as temperature and moisture, influenced carbon-cycling rates of river-based ecosystems. Carbon cycling is critical for the functioning of systems across a range of spatial scales, from local food webs to the global climate.

“River ecosystems play significant roles in the global carbon cycle by regulating rates of decomposition and transporting organic matter to the oceans, but we have only a rudimentary understanding of how decomposition rates vary from river to river,” said Scott Tiegs, Ph.D., associate professor of biology at Oakland University in Michigan who led the study.

Unlike most previous studies on carbon cycling in streams and rivers, the methodology in this study was identical across all field sites. The study made use of a standardized, easy-to-use bioassay, which enabled a large number of researchers to participate in the study.

“As a result, we were able to quantify decomposition rates in over 500 rivers across the globe, including every continent,” Dr. Tiegs said.

The paper noted that the climatic factors that govern decomposition rates are increasingly impacted by human activities. These findings will help researchers establish baselines to quantify environmental impacts to the functioning of ecosystems on a global scale.

“In addition to providing fundamental information on how river ecosystems function, our results provide baseline data that will enable future researchers to evaluate large-scale ecological responses to warming and other dimensions of global climate change,” Dr. Tiegs said.

“There are drastic changes expected at the poles,” Dr. Costello said. “Our data show that cold temperatures are greatly restricting carbon loss from northern streams, but as the climate warms, the carbon stored in those streams has the potential to be lost to the atmosphere much more rapidly. The expected loss of carbon from thawing permafrost gets a lot of attention, but our study shows that warming streams in these areas may also amplify the loss of carbon from northern biomes.”

The research was sponsored by the Ecuadorian Science Foundation. The article, titled “Global Patterns and Drivers of Ecosystem Functioning in Rivers and Riparian Zones,” is posted online at http://advances.sciencemag.org/content/5/1/eaav0486.

The Role of Dr. Costello’s Lab in the Study

Dr. Costello’s lab group at Kent State, which is broadly focused on ecosystem ecology, had four sites in Northeast Ohio that are included among the 500 study sites where they deployed the cotton strips. The sites were Stebbins Gulch at the Holden Arboretum, Triple Springs at West Branch State Park, the Mahoning River at Jennings Woods and Breakneck Creek at the Kent State South Slates property.

“At a given river, the cotton was placed just a few meters apart, yet that boundary between the river and land made a big difference in how quickly the carbon returned to the atmosphere,” Dr. Costello said. “In some cases, we predict that leaves falling on land would stay on the soil 10 times longer than leaves falling in the river.”

Dr. Costello’s biggest role in this paper’s manuscript was in the data analysis.

“Scott Tiegs and I designed the statistical analyses we wanted to do, and I implemented all of them to uncover the patterns in these 500 study sites,” Dr. Costello said.

His lab is still generating data from the cotton strips to understand what other factors besides temperature and moisture influence decomposition rates. They are studying the role of nutrients (nitrogen, phosphorus and trace metals) on how quickly this carbon decomposes. Early results are showing that the amount of nitrogen trapped by the microbes breaking down the cotton indicates how quickly the carbon decomposes.

###

For more information about the Costello Biogeochemistry Lab at Kent State, visit https://costellolab.weebly.com.

For more information about Kent State’s Center for Ecology and Natural Resource Sustainability, visit http://www.kent.edu/esdri/center-ecology-natural-resource-sustainability.

For more information about Kent State’s Department of Biological Sciences, visit http://www.kent.edu/biology.

Photo Caption:

Dave Costello, Ph.D., (left), assistant professor in Kent State University’s Department of Biological Sciences in the College of Arts and Sciences, and Devan Mathie (right), an undergraduate honors student working in Dr. Costello’s lab, stand in Wahoo Ditch, a tributary to Breakneck Creek in Ravenna, Ohio.

Media Contacts:

Dave Costello

[email protected]

330-672-2035

Jim Maxwell

[email protected]

330-672-8028

Emily Vincent

[email protected]

330-672-8595

Media Contact
Dave Costello
[email protected]
330-672-2035

Original Source

https://www.kent.edu/kent/news/kent-state-ecologist-part-global-collaboration

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aav0486

Tags: BiologyClimate ChangeEarth ScienceEcology/EnvironmentGeology/SoilHydrology/Water Resources
Share12Tweet8Share2ShareShareShare2

Related Posts

Transposable Elements Shape Immune Cell Regulatory Landscapes

Transposable Elements Shape Immune Cell Regulatory Landscapes

November 27, 2025
Analyzing Odorant-Binding Proteins in Bemisia tabaci

Analyzing Odorant-Binding Proteins in Bemisia tabaci

November 26, 2025

Flashlight Fish Use Bioluminescent Blinks to Attract Mates

November 26, 2025

EphA10 m6A Modification Fuels Prostate Cancer Progression

November 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    102 shares
    Share 41 Tweet 26
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    101 shares
    Share 40 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Health Technology Assessment in Iran’s Politics

Innovative Solutions for Precision in Microplastic Analysis

Thalassemia Patient Shows Brown Tumors via PET/CT

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.