• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Keeping roads in good shape reduces greenhouse gas emissions, Rutgers-led study finds

Bioengineer by Bioengineer
January 15, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Delaying pavement maintenance boosts emissions and costs

IMAGE

Credit: Hao Wang/Rutgers University-New Brunswick

Keeping road pavement in good shape saves money and energy and reduces greenhouse gas emissions, more than offsetting pollution generated during road construction, according to a Rutgers-led study.

The study appears in the International Journal of Sustainable Transportation.

The researchers found that extending the life of pavement through preventive maintenance can reduce greenhouse gases by up to 2 percent; transportation agencies can cut spending by 10 percent to 30 percent; and drivers can save about 2 percent to 5 percent in fuel consumption, tire wear, vehicle repair and maintenance costs because of smoother surfaces.

The research will help transportation agencies choose appropriate maintenance strategies that consider environmental impacts in decision-making.

“When pavement is in its early failure stage, preventive maintenance can restore performance and extend pavement life with lower costs,” said study lead author Hao Wang, an associate professor who focuses on infrastructure engineering in the Department of Civil and Environmental Engineering at Rutgers University-New Brunswick. “Pavement preservation leads to significant environmental benefits due to the improved surface condition, which results in smooth pavement, saves energy and reduces user costs.”

The transportation sector is the largest source of greenhouse gas emissions, primarily carbon dioxide from cars, trucks and buses. The researchers used the long-term pavement performance (LTPP) database maintained by Federal Highway Administration of U.S. Department of Transportation to measure the environmental impact of roadway repairs, especially preserving asphalt pavement, in terms of carbon dioxide emissions linked to global warming.

The study used a full life-cycle approach to look at the carbon footprint of common ways to preserve pavement. Treatments include thin overlay (placing up to 2 inches of asphalt on roads), chip seal (spraying asphalt emulsion on pavement and laying aggregate), slurry seal (spreading a slurry over pavement) and crack seal (filling cracks with rubberized asphalt or polymer-modified asphalt with some filler).

The study found that thin overlay leads to the greatest overall reduction in carbon dioxide emissions – 2 percent – because of a large decrease in road roughness. The crack seal method led to the lowest emission reduction – 0.5 percent – but all preventive maintenance methods reduce emissions overall. The researchers further developed the life-cycle assessment tool for evaluating the environmental impact of roadway projects.

The study included researchers at the Rutgers School of Engineering and their collaborators at North Dakota State University and Al-Mustansiriyah University in Iraq.

###

Media Contact
Todd Bates
[email protected]
848-932-0550

Original Source

https://news.rutgers.edu/keeping-roads-good-shape-reduces-greenhouse-gas-emissions-rutgers-led-study-finds/20190114#.XD0DaVxKi70

Related Journal Article

http://dx.doi.org/10.1080/15568318.2018.1519086

Tags: Biomedical/Environmental/Chemical EngineeringCivil EngineeringClimate ChangeEcology/EnvironmentEnergy SourcesEnvironmental HealthMaterialsPublic HealthTechnology/Engineering/Computer ScienceVehicles
Share12Tweet8Share2ShareShareShare2

Related Posts

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025
blank

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025

Discovery of MrSTP20: Sugar Transporter in Salt Stress

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Selective Arylating Uncommon C–F Bonds in Polyfluoroarenes

HIRAID Framework Enhances Nurse and Patient Outcomes

tRF-34-86J8WPMN1E8Y2Q Fuels Gastric Cancer Progression

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.