• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Juicy genomics

Bioengineer by Bioengineer
June 17, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study reveals DNA secrets of 100 tomato types

IMAGE

Credit: Zachary Lippman

When Pulitzer Prize and Grammy award winner Kendrick Lamar rapped “I got millions, I got riches buildin’ in my DNA,” he almost certainly wasn’t talking about the humble tomato. But a new study unveiling more than 230,000 DNA differences across 100 tomato varieties which will allow breeders and scientists to engineer larger, juicier, more profitable plants, proves that tomatoes indeed have riches buildin’ in their DNA, too.

The study will be published June 17 in Cell.

“The vast majority of the DNA differences we discovered are completely new,” says Michael Schatz, Bloomberg Distinguished Associate Professor of Computer Science and Biology at Johns Hopkins University and the study’s co-corresponding author.

As one of the largest fruit crops in the world, the commercially growing tomatoes is an $190 billion global industry that relies pinpointing which large-scale difference between genomes, or structural variants, are responsible for the variety of tomato shapes, colors and tastes we see at the store.

Previous technologies, however, didn’t allowed scientists to read large portions of a genome, only allowing for small bits to be read at a time in a piecemeal fashion.

“Like a big jigsaw puzzle with hundreds of millions of small pieces, maybe you manage to put together the corners, but not the big blue sky. The new technology used in this study allowed us to zoom in and get larger, clearer puzzle pieces,” says Schatz.

Using new DNA sequencing technology and software to ‘sharpen’ their view, Schatz and more than 30 collaborators around the world in a self-proclaimed “tomato consortium” were able to sequence and compare the genomes of 100 different tomato types. In doing so, they found more than 230,000 structural variants.

From there, the team dove deeper with detailed genetic experiments to understand how some of those variants affect tomato traits. In one experiment, they found that duplication of a particular gene causes a plant’s tomatoes to be about 20% larger. Next, they discovered a gene that contributes to a smoky flavor in some tomatoes. And in a third set of experiments, the researchers uncovered a complex interaction involving four structural variants that can mitigate a potential trade-off between a feature that simplifies tomato harvesting and another that reduces productivity.

The scale of their investigation has never been accomplished for any other crop, says Cold Spring Harbor Laboratory professor and Howard Hughes Medical Institute investigator Zachary Lippman, who co-led the project.

“I think it sets the foundation for what other crops and people in those working on those crops should be thinking about,” says Lippman.

“All crops are based on mutations. Everything that we eat is based on mutations and up until now it’s pretty been pretty slow process to identify and evaluate the importance of those mutations.”

Adds Schatz: “We’ve taken processes that used to take hundreds, or in some cases, even thousands of years, and performed them very rapidly. From here, we can apply our understanding of genetics to very rapidly domesticate some of the species related to tomatoes and create new crops to feed the world with.”

###

Media Contact
Chanapa Tantibanchachai
[email protected]

Tags: Agricultural Production/EconomicsAgricultureComputer ScienceFood/Food ScienceGeneticsResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.