• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, June 29, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

IUPUI chemists develop new technique that could speed drug development

Bioengineer by Bioengineer
December 1, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Whitney Walker, School of Science at Indiana University-Purdue University Indianapolis

INDIANAPOLIS — Synthesizing useful new compounds is what pharmaceutical discovery and development is all about. Researchers at the School of Science at Indiana University-Purdue University Indianapolis have devised a method to substantially speed up the process.

The IUPUI chemists have developed and tested a new molecular binding technique that could shorten or abridge the human and animal drug discovery and development process. The new method also is potentially more economical and ecologically friendly than that currently used.

The new synthetic method is used in the production of compounds containing nitrogen. Approximately 75 percent of compounds with medicinal uses have a nitrogen atom. Such drugs are used to treat a wide range of conditions including cancers, bacterial and inflammatory diseases, attention-deficit/hyperactivity disorder, Alzheimer's disease, epilepsy, asthma, and diabetes.

Drugs are chemical compounds with differing arrangements of atoms. The new drug-synthesis method is an organic chemical process taking fewer steps than older methods. It has potential usefulness in the development of a second generation of existing drugs as well as contributing to the discovery of new pharmaceutical treatments.

"Site-selective C-H arylation of primary aliphatic amines enabled by a catalytic transient directing group" is published online ahead of print in Nature Chemistry. Authors of the paper are Haibo Ge, associate professor of chemistry and chemical biology, and post-doctoral researcher Yongbing Liu of the School of Science at IUPUI.

"Having fewer steps and simpler chemical ingredients, as our method does, has potential benefits both for the pharmaceutical industry and for patients," said Ge, the organic and medicinal chemist who developed the method and is the corresponding author of the Nature Chemistry study. "Our study showed that our technique is an advancement over the currently used method.

"While we are still at an early stage, it appears that in addition to improving the process of synthesizing molecules, our improved method makes that process more economical by saving time and labor. As it is "atom efficient," there is less waste needing disposal."

Using their new method, the IUPUI chemists successfully synthesized analogues of fingolimod, a drug used to treat relapsing forms of multiple sclerosis, an autoimmune inflammatory disease.

"Hydrocarbons — compounds made out of carbon and hydrogen or having a carbon-hydrogen bond — are used in daily life all the time – from clothes to toothbrushes," said Partha Basu, chair and professor of chemistry and biological chemistry at IUPUI. "These compounds are generally stable and do not react easily with common chemicals. Transformation of one hydrocarbon to another is of immense interest for developing new materials, from drugs to energy storage.

"But making such transformation in a selective way has been a challenge for more than a century. This is what Dr. Ge did using a simple but efficient process that requires fewer steps. This simplicity makes the chemistry unique, and it can have a lasting impression in the field of C-H bond activation," Basu said.

###

The School of Science at IUPUI and NSF grant CHE-1350541 funded the development of the new method and the Nature Chemistry study.

The School of Science at IUPUI is committed to excellence in teaching, research and service in the biological, physical, computational, behavioral and mathematical sciences. The School is dedicated to being a leading resource for interdisciplinary research and science education in support of Indiana's effort to expand and diversify its economy.

Media Contact

Cindy Fox Aisen
[email protected]
317-843-2275

http://science.iupui.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Group Leader in Chemical Proteomics, Dr. Guillaume Médard, and his research group in the lab.

Shining some light on the obscure proteome

June 29, 2022
Matthew Goldberg, Associate Research Scientist, Yale Program on Climate Change Communication

Romantic partners can influence each other’s beliefs and behaviors on climate change, new Yale study finds

June 29, 2022

The world’s rivers are changing, here’s how

June 29, 2022

Immune cells anchored in tissues offer unique defenses against pathogens and cancers

June 29, 2022
Please login to join discussion

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirologyViolence/CriminalsZoology/Veterinary ScienceUniversity of WashingtonWeather/StormsUrbanizationVaccineUrogenital SystemVirusVaccinesVehiclesWeaponry

Recent Posts

  • Shining some light on the obscure proteome
  • Romantic partners can influence each other’s beliefs and behaviors on climate change, new Yale study finds
  • The world’s rivers are changing, here’s how
  • Immune cells anchored in tissues offer unique defenses against pathogens and cancers
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....