• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

It’s a one-way street for sound waves in this new technology

Bioengineer by Bioengineer
April 3, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Harris Lab/Yale University

New Haven, Conn. – Imagine being able to hear people whispering in the next room, while the raucous party in your own room is inaudible to the whisperers. Yale researchers have found a way to do just that — make sound flow in one direction — within a fundamental technology found in everything from cell phones to gravitational wave detectors.

What’s more, the researchers have used the same idea to control the flow of heat in one direction. The discovery offers new possibilities for enhancing electronic devices that use acoustic resonators.

The findings, from the lab of Yale’s Jack Harris, are published in the April 4 online edition of the journal Nature.

“This is an experiment in which we make a one-way route for sound waves,” said Harris, a Yale physics professor and the study’s principal investigator. “Specifically, we have two acoustic resonators. Sound stored in the first resonator can leak into the second, but not vice versa.”

Harris said his team was able to achieve the result with a “tuning knob” — a laser setting, actually — that can weaken or strengthen a sound wave, depending on the sound wave’s direction.

Then the researchers took their experiment to a different level. Because heat consists mostly of vibrations, they applied the same ideas to the flow of heat from one object to another.

“By using our one-way sound trick, we can make heat flow from point A to point B, or from B to A, regardless of which one is colder or hotter,” Harris said. “This would be like dropping an ice cube into a glass of hot water and having the ice cubes get colder and colder while the water around them gets warmer and warmer. Then, by changing a single setting on our laser, heat is made to flow the usual way, and the ice cubes gradually warm and melt while the liquid water cools a bit. Though in our experiments it’s not ice cubes and water that are exchanging heat, but rather two acoustic resonators.”

Although some of the most basic examples of acoustic resonators are found in musical instruments or even automobile exhaust pipes, they’re also found in a variety of electronics. They are used as sensors, filters, and transducers because of their compatibility with a wide range of materials, frequencies, and fabrication processes.

###

The first author of the study is former Yale postdoctoral associate Haitan Xu. Co-authors of the study are Yale graduate student Luyao Jiang and A.A. Clerk of the University of Chicago.

The work is supported by the Air Force Office of Scientific Research, the Office of Naval Research, and the Simons Foundation.

Media Contact
Jim Shelton
[email protected]

Tags: AcousticsChemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsMaterials
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Bezos Earth Fund Awards $2M to UC Davis and American Heart Association to Pioneer AI-Designed Foods

October 24, 2025
Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

October 24, 2025

Breakthrough Discovery of Elusive Solar Waves That May Energize the Sun’s Corona

October 24, 2025

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1282 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    194 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nurses’ Insights on Hajj Mass Gathering Preparedness

Exploring Submergence Tolerance in Rice Seedlings

Genetic Diversity and Cytotype Insights in Platostoma

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.