• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Investigating coral and algal ‘matchmaking’ at the cellular level

Bioengineer by Bioengineer
June 19, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Could more heat tolerant, non-preferred algae could revive bleached coral communities even if the relationship is less efficient?

IMAGE

Credit: Tingting Xiang

Palo Alto, CA–What factors govern algae’s success as “tenants” of their coral hosts both under optimal conditions and when oceanic temperatures rise? A Victoria University of Wellington-led team of experts that includes Carnegie’s Arthur Grossman investigates this question.

Corals are marine invertebrates that build large exoskeletons from which colorful reefs are constructed. But this reef-building is only possible because of a mutually beneficial relationship between the coral and various species of single-celled algae called dinoflagellates that live inside the cells of coral polyps.

These algae are photosynthetic, which means that like plants they can convert the Sun’s energy into chemical energy in the form of food. Many of the photosynthetically derived nutrients synthesized by an alga serve as food for its coral host, while the host in turn provides the alga with essential inorganic nutrients, including carbon dioxide, nitrogen in the form of ammonium, and phosphate. However, ocean warming due to climate change is causing many corals to lose their native algal tenants–along with the nutrients that they provide–a phenomenon called bleaching. If the bleached coral is not recolonized with new algal tenants, it can die.

Some species of the dinoflagellate algae form these symbiotic relationships with multiple types of coral, others are more specific.

“We’re interested in understanding the cellular processes that maintain those preferential relationships,” Grossman said. “We also want to know if it’s possible that more heat tolerant, non-preferred algae could revive bleached coral communities even if the relationship is less efficient.”

Other organisms such as sea anemones are part of the same phylum as coral, called cnidaria; they also host algae but are easier to study. In this paper–published by The ISME Journal–the researchers analyzed the differences in cellular function that occurred when a type of anemone called Exaiptasia pallida was populated by two different genera of dinoflagellate algae–one native and highly susceptible to thermal bleaching and the other, which is non-native but more heat-resistant.

“In this study we hoped to elucidate proteins that function to improve nutrient exchange between the anemone and its native algae and why the anemone’s success is compromised when it hosts the non-native heat resistant algae,” Grossman said.

The team found that anemones colonized by native algae expressed elevated levels of proteins associated with the metabolism of organic nitrogen and lipids–nutrients that can be efficiently synthesized as a consequence of the algae’s photosynthetic activity. These anemones also synthesized a protein called NPC2-d which is thought to be key to cnidarian’s ability to take up the algae and recognize it as a symbiotic partner.

In contrast, anemones with the non-native tenant expressed proteins associated with stress, which likely reflects less optimal integration of the metabolisms of the two organisms.

“Our findings open doors to future studies to identify key proteins and cellular mechanisms involved in maintaining a robust relationship between the alga and its cnidarian host and the ways in which the metabolism of the organisms are integrated,” Grossman concluded.

###

This research was supported by the Marsden Fund of the Royal Society Te Aparangi.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Media Contact
Arthur Grossman
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41396-019-0437-5

Tags: BiologyCell BiologyClimate ChangeEcology/EnvironmentMarine/Freshwater BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Cells Collaborate to Amplify Their Sensory Abilities

Cells Collaborate to Amplify Their Sensory Abilities

September 15, 2025
How Cheese Fungi Unravel Evolutionary Mysteries

How Cheese Fungi Unravel Evolutionary Mysteries

September 15, 2025

Grants Accelerate Training and Research in Biological Complexity

September 15, 2025

Rice Scientists Innovate ‘Molecular Magnifying Glass’ to Detect Plant Diseases Earlier

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Fiber-Friendly Gut Microbiome Reverses Liver Fat

Boosting AMPA Signaling Enhances Spinal Cord Repair

CPAP Use Linked to Lower Pneumonia Risk in OSA

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.