• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Intranasal influenza vaccine enhances immune response and offers broad protection, researchers find

Bioengineer by Bioengineer
May 3, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Georgia State University

ATLANTA–An influenza vaccine that is made of nanoparticles and administered through the nose enhances the body’s immune response to influenza virus infection and offers broad protection against different viral strains, according to researchers in the Institute for Biomedical Sciences at Georgia State University.

Recurring seasonal flu epidemics and potential pandemics are among the most severe threats to public health. Current seasonal influenza vaccines induce strain-specific immunity and are less effective against mismatched strains. Broadly protective influenza vaccines are urgently needed.

Intranasal vaccines are a promising strategy for combatting infectious respiratory diseases, such as influenza. They are more effective than vaccines injected into a muscle because they can induce mucosal immune responses in respiratory tracts, preventing infection at the portal of virus entry. They can also stimulate systemic immune responses throughout the body.

Scientists can overcome vaccine safety concerns and the long production phase of virus-based influenza vaccines by constructing intranasal vaccines with recombinant proteins or peptides. However, these vaccines are poor at producing immune responses, so it’s necessary to have potent mucosal adjuvants, substances that enhance the body’s immune response to antigens (the molecular structures on pathogens). The absence of appropriate mucosal adjuvants currently hinders the development of such a vaccine.

In this study, the researchers developed an intranasal influenza vaccine using recombinant hemagglutinin (HA), a protein found on the surface of influenza viruses, as the antigen component of the vaccine. HA is integral to the ability of influenza virus to cause infection.

They also created a two-dimensional nanomaterial (polyethyleneimine-functionalized graphene oxide nanoparticles) and found that it displayed potent adjuvant (immunoenhancing) effects on influenza vaccines delivered intranasally. The findings are published in the journal Proceedings of the National Academy of Sciences.

“Conventional flu vaccines predominantly induce antibody responses,” said Dr. Baozhong Wang, senior author of the study, principal investigator of the National Institutes of Health grant supporting the study and a professor in the Institute for Biomedical Sciences. “However, recent research demonstrates that lung resident memory T cell responses are indispensable for optimal cross-protection against pulmonary influenza infection. The development of lung resident T cell responses requires vaccination by a respiratory route or influenza virus infection. Our research opens a new path for the development of needle-free and logistically simplified intranasal flu vaccines for cross-protection.”

“In our study, we reported for the first time that two-dimensional graphene oxide nanomaterials had a potent adjuvant effect in boosting the immune responses of intranasal hemagglutinin (HA) vaccines,” said Dr. Chunhong Dong, lead author of the study and a postdoctoral research Fellow in Dr. Baozhong Wang’s lab in the Institute for Biomedical Sciences.

“This study gives new insights into developing high performance intranasal vaccine systems with two-dimensional sheet-like nanoparticles,” Dong said. “The graphene oxide nanoparticles have extraordinary attributes for drug delivery or vaccine development, such as the ultra-large surface area for high-density antigen loading, and the vaccine showed superior immunoenhancing properties in vitro and in vivo. The nanoplatform could be easily adapted for constructing mucosal vaccines for different respiratory pathogens.”

The study, conducted in mice and cell culture, found the nanoparticles significantly enhanced immune responses at mucosal surfaces and throughout the body in mice. The robust immune responses conferred immune protection against influenza virus challenges by homologous (same) virus strains and heterologous (different) virus strains.

The results are also promising because needle-free, intranasal influenza vaccines possess superior logistical advantages over traditional injectable vaccines, such as easy administration with high acceptance for recipients and the avoidance of biohazardous waste.

###

Co-authors of the study include Dr. Chunhong Dong, Ye Wang, Gilbert Gonzalez, Yao Ma, Yufeng Song, Dr. Sang-Moo Kang and Dr. Baozhong Wang of the Institute for Biomedical Sciences at Georgia State and Shelly Wang and Dr. Richard W. Compans of Emory University School of Medicine.

The study was funded by the National Institutes of Health’s National Institute of Allergy and Infectious Diseases.

Media Contact
LaTina Emerson
[email protected]

Tags: Immunology/Allergies/AsthmaInfectious/Emerging DiseasesMedicine/HealthNanotechnology/MicromachinesPharmaceutical ScienceVaccinesVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Mechanoluminescence Without Crystals Opens New Horizons for Next-Gen Materials

Mechanoluminescence Without Crystals Opens New Horizons for Next-Gen Materials

October 28, 2025
blank

Thiophene-Doped Fully Conjugated Covalent Organic Frameworks Boost Photocatalytic Hydrogen Peroxide Production Efficiency

October 28, 2025

Climate impacts of biochar and hydrochar differ in boreal grasslands

October 27, 2025

Cracking the Code of ‘Sticky’ Chemistry: A Path to Cleaner, More Efficient Fuels

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1287 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nutrient Deficiency in Breast Milk Linked to Health Issues in Children of Women with HIV

Oxygen Deprivation Alters Genes, Increasing Disease Risk

Submerging Indian Megacities Face ‘Alarming’ Risks of Structural Damage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.