• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Insight into the neglected tropical disease sleeping sickness

Bioengineer by Bioengineer
December 12, 2019
in Immunology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Mick Urbaniak


Lancaster University researchers have shed light on how the parasite which causes sleeping sickness multiples inside its host.

Human African Trypanosomiasis or sleeping sickness, only occurs in Sub-Saharan Africa where an estimated 60 million people in 36 countries are at risk.

According to the World Health Organisation (WHO), more than 95 percent of reported cases are caused by the parasite Trypanosoma brucei gambiense, which is found in western and central Africa. The other 10 percent of cases are caused by Trypanosoma brucei rhodesiense, which is found in eastern and southern Africa.

Both subspecies are harboured by both wild and domestic animals which provide a reservoir of infection for Tsetse flies which then bite humans.

The infection attacks the central nervous system, causing severe neurological disorders. Without treatment the disease is fatal.

Research led by Dr Mick Urbaniak with Dr Corinna Benz of Lancaster University reveals that the parasite’s cell division differs from that of humans and animals.

The paper published in PLoS Pathogens has identified many hundreds of proteins that were not previously known to be involved in the cell division cycle.

Dr Urbaniak said: “Differences in the control in cell division may be exploited to create drugs that target the parasite but do not affect the human or animal host.”

This is the first in-depth quantitative analysis of changes in the phosphoproteome that occur across the cell cycle in T. brucei. The identification of many hundred CCR phosphorylation sites confirms the importance of many known cell cycle proteins and implicates many more as having a potential role in the cell cycle.

“The data presented here will be of value to the trypanosome research community, and provides an important insight into mechanisms of post-transcriptional gene regulation that are likely to prove of relevance to the wider community as well.”

###

Media Contact
Gillian Whitworth
[email protected]
44-125-245-92612

Related Journal Article

http://dx.doi.org/10.1371/journal.ppat.1008129

Tags: BiologyCell BiologyDisease in the Developing WorldEpidemiologyInfectious/Emerging DiseasesMedicine/HealthneurobiologyParasitologySleep/Sleep Disorders
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Variation in Emergency Central Catheter Removal Among NICUs

Tumor Immune Ecotypes Predict Checkpoint Therapy Success

Multifaceted Assembly Drives Florigen Complex Formation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.