• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, April 11, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Insect vector feeding recognized by machine learning

Bioengineer by Bioengineer
November 14, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: PROMark Yokoyama / Flickr (CCBY)

Scientists have used machine learning algorithms to teach computers to recognize the insect feeding patterns involved in pathogen transmission. The study, published in PLOS Computational Biology, also uncovers plant traits that might lead to the disruption of pathogen transmission and enable advances in agriculture, livestock and human health.

Insects that feed by ingesting plant and animal fluids cause devastating damage to humans, livestock, and agriculture worldwide, primarily by transmitting pathogens of plants and animals. These insect vectors can acquire and transmit pathogens causing infectious diseases such as citrus greening through probing on host tissues and ingesting host fluids. The feeding processes required for successful pathogen transmission by sucking insects can be recorded by monitoring voltage changes across an insect-food source feeding circuit.

In this research, entomologists and computer scientists at the United States Department of Agriculture-Agricultural Research Service (USDA-ARS), University of Florida, and Princeton University used machine learning algorithms to teach computers to recognize insect feeding patterns involved in pathogen transmission.

In addition, these machine learning algorithms were used to detect novel patterns of insect feeding and uncover plant traits that might that lead to disruption of pathogen transmission. While these techniques were used to help identify strategies to combat citrus greening, such intelligent monitoring of insect vector feeding will facilitate rapid screening and disruption of pathogen transmission causing disease in agriculture, livestock, and human health.

###

In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology: http://dx.plos.org/10.1371/journal.pcbi.1005158

Citation: Willett DS, George J, Willett NS, Stelinski LL, Lapointe SL (2016) Machine Learning for Characterization of Insect Vector Feeding. PLoS Comput Biol 12(10): e1005158. doi:10.1371/journal.pcbi.1005158

Funding: Significant funding was provided by the Citrus Research and Development Foundation. http://citrusrdf.org/ The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Media Contact

Denis Willett
[email protected]

http://www.plos.org

Source:

scienmag.com

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Men with low health literacy less likely to choose active surveillance for prostate cancer after tumor profiling

April 10, 2021
IMAGE

Level of chromosomal abnormality in lung cancer may predict immunotherapy response

April 10, 2021

Mutant KRAS and p53 cooperate to drive pancreatic cancer metastasis

April 10, 2021

Better metric for thermoelectric materials means better design strategies

April 10, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    851 shares
    Share 340 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    59 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    55 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

GeneticsCell BiologyBiologyPublic HealthMedicine/HealthcancerInfectious/Emerging DiseasesMaterialsTechnology/Engineering/Computer ScienceClimate ChangeChemistry/Physics/Materials SciencesEcology/Environment

Recent Posts

  • Men with low health literacy less likely to choose active surveillance for prostate cancer after tumor profiling
  • Level of chromosomal abnormality in lung cancer may predict immunotherapy response
  • Mutant KRAS and p53 cooperate to drive pancreatic cancer metastasis
  • Better metric for thermoelectric materials means better design strategies
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In