• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Increasing snow depth prevented wintertime soils from cooling during the warming hiatus

Bioengineer by Bioengineer
February 1, 2021
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Myriams Fotos from Pixabay

Soil temperature has a significant impact on land-atmosphere interaction within the Earth system, affecting surrounding ecology, agriculture, and much more. This influence is a primary component of what is called a “thermal regime” of land, or a regular pattern of temperature change within the soil. Climatologists are intrigued by fluctuating soil temperatures, especially during the first decade of the 21st century where global surface warming has slowed down. The thermal regime, according to scientists, is greatly influential on climate, particularly seasonal climate prediction. Now, studies are focused on determining whether or not soil temperatures also respond to slower surface warming, therefore entering a warming slowdown, or hiatus.

“Soil temperatures normally are closely coupled with the upper surface air temperature,” said Dr. Haoxin Zhang, the lead author of the most recent study published in Advances in Atmospheric Sciences, “…there are also many other factors including solar radiation, snow cover, soil memory, etc., that may alter the soil temperatures.”

During the recent global warming hiatus, the strongest warming slowdown throughout China occurred during winter. Observed surface air temperatures and soil temperatures at multiple depths showed consistent cooling trends at many Chinese reporting stations. However, in northeastern China, surface air temperature seemed less influential on soil temperature. In this region, soil data retrieved from 0cm to a depth of 80cm suggested a continuing warming trend despite the surface air warming hiatus.

“The enhanced thermal insulation effect of the snow cover reduced the heat loss from the soils,” said Dr. Zhang. To confirm their results, the team investigated snow cover along with other direct and indirect soil temperature influences in northeastern China. The research further showed that the increasing snow depth in northeastern China may be the main reason for the continued warming trend in soil temperatures. Dr. Zhang further stated “…this is important for the agriculture.”

In addition to the thermal insulation effect of snow cover, the ability for soil to record human changes and environmental influences, or “soil memory” is also important, especially at greater depths.

“This means the effects of various factors may be ‘memorized’ in the deep soil temperatures, which in turn contribute to the seasonal climate prediction.” said Dr. Naiming Yuan, the corresponding author of the study. “The thermal conditions from previous seasons have stronger impacts than those from the surface air temperatures or the snow cover of the considered season at deeper layers (around 160cm or deeper).”

###

Media Contact
Ms. Zheng Lin
[email protected]

Original Source

http://english.iap.cas.cn/home/News/202101/t20210129_262369.html

Related Journal Article

http://dx.doi.org/10.1007/s00376-020-0074-y

Tags: AgricultureAtmospheric ScienceEarth Science
Share12Tweet8Share2ShareShareShare2

Related Posts

WashU Secures Up to $5.2 Million in Federal Funding to Enhance Biomanufacturing Capabilities

WashU Secures Up to $5.2 Million in Federal Funding to Enhance Biomanufacturing Capabilities

August 13, 2025
blank

NRG Oncology Announces New Leadership for NCORP and Veterans Affairs Research Programs

August 13, 2025

Cerium’s Unique Redox Properties in BaFe1−xCexO3−δ Perovskites

August 13, 2025

Maximizing Grain Yield While Minimizing Environmental Impact: A Sustainable Approach

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

WashU Secures Up to $5.2 Million in Federal Funding to Enhance Biomanufacturing Capabilities

NRG Oncology Announces New Leadership for NCORP and Veterans Affairs Research Programs

Cerium’s Unique Redox Properties in BaFe1−xCexO3−δ Perovskites

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.