• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

In-situ structural evolution of Zr-doped Na3V2(PO4)2F3 coated by N-doped carbon for SIB

Bioengineer by Bioengineer
June 30, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Journal of Energy Chemistry

Na3V2(PO4)2F3(NVPF), a cathode material used in sodium-ion batteries (SIB), features ultrafast Na+ migration and high structural stability because of its three-dimensional open framework. However, the poor intrinsic electronic conductivity of NVPF often leads to high polarization, low Coulombic efficiency, and unsatisfactory rate performance, which hinder its commercial application.

Recently, a group led by Prof. Shuangqiang Chen and Prof. Yong Wang from Shanghai University synthesized zirconium-doped NVPF nanoparticles coated with a nitrogen-doped carbon layer and demonstrated a synergistic effect on the overall electrochemical performance. Specifically, the optimized NVPF-Zr-0.02/NC electrode led to high reversible capacity (119.2 mA h g-1 at 0.5 C), superior rate capacity (98.1 mA h g-1 at 20 C), and excellent cycling performance (capacity retention of 90.2% in 1000 cycles at 20 C). In situ XRD characterization of the NVPF-Zr-0.02/NC electrode was performed to monitor the real-time structural evolution in different charge/discharge states. The results confirmed the presence of several intermediates with new phases, following a step-wise Na-extraction/intercalation mechanism with reversible multiphase changes. In addition, NVPF-Zr-0.02/NC//hard carbon full cells demonstrated a high reversible capacity of 99.8 mA h g-1 at 0.5C, with an average output voltage of 3.5 V, high energy density of ~194 Wh kg-1, and good cycling stability, thus indicating excellent potential for practical application.

“Such attempts provide meaningful guidance and reference for practical SIBs with high capacity, long cycle life, and good structural stability,” said Prof. Chen.

###

The authors gratefully acknowledge the National Natural Science Foundation of China (21975154), the Shanghai Municipal Education Commission (Innovation Program (2019-01-07-00-09-E00021) and Innovative Research Team of High-level Local Universities in Shanghai. Research is also supported by The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power. The authors thank Laboratory for Microstructures, Instrumental Analysis, and Research Center of Shanghai University for offering access to material characterizations.

This paper, entitled “In-situ structural evolution analysis of Zr-doped Na3V2(PO4)2F3 coated by N-doped carbon layer as high-performance cathode for sodium-ion batteries,” has been published in Journal of Energy Chemistry. (https://doi.org/10.1016/j.jechem.2021.06.015)

About the journal

The Journal of Energy Chemistry is a publication that mainly reports on creative researches and innovativeapplications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy,as well as the conversions of biomass and solar energy related with chemical issues to promote academicexchanges in the field of energy chemistry and to accelerate the exploration, research and development of energyscience and technologies.

At Elsevier
https://www.sciencedirect.com/journal/journal-of-energy-chemistry

Manuscript submission
https://www.editorialmanager.com/jechem/default.aspx

Media Contact
Xiaoluan Wei
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.jechem.2021.06.015

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Natural P450 Variants Influence Aedes Dengue Susceptibility

Natural P450 Variants Influence Aedes Dengue Susceptibility

August 12, 2025
blank

RSNA AI Challenge Models Demonstrate Independent Mammogram Interpretation Capabilities

August 12, 2025

Breakthrough Protein Therapy Emerges as First-Ever Antidote for Carbon Monoxide Poisoning

August 12, 2025

Mount Sinai Secures $4 Million Grant from American Cancer Society to Establish Cancer Health Research Center

August 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Natural P450 Variants Influence Aedes Dengue Susceptibility

RSNA AI Challenge Models Demonstrate Independent Mammogram Interpretation Capabilities

Breakthrough Protein Therapy Emerges as First-Ever Antidote for Carbon Monoxide Poisoning

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.