• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Improving treatment of spinal cord injuries

Bioengineer by Bioengineer
August 12, 2020
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Osmotic therapy device reduces swelling to prevent secondary injuries in rats

IMAGE

Credit: Victor Rodgers/UC Riverside

When injured, the spinal cord swells, restricting blood flow, resulting in further, often critical and permanent motor, sensory, and autonomic function damage. Rapid prevention of spinal cord swelling immediately after injury is key to preventing more serious damage. The only treatment to date has been steroid therapy with methylprednisolone, which is minimally effective.

Now, in an open-access paper published in Frontiers in Bioengineering and Biotechnology, a group led by Marlan and Rosemary Bourns College of Engineering Jacques S. Yeager, Sr. Professor of Bioengineering Victor G. J. Rodgers and UCR School of Medicine biomedical sciences professor Devin Binder describes an osmotic therapy device that gently removes fluid from the spinal cord to reduce swelling in injured rats with good results. The device can eventually be scaled up for testing in humans.

The device consists of a tangential flow module supporting a semipermeable membrane connected to a hydrogel that rests on the exposed spinal cord. Artificial cerebrospinal fluid containing the protein albumin to initiate osmosis passes across the device side of the membrane, transporting water molecules from the spinal cord. Both fluids drain into a small chamber and cycle again through the device to remove more water. The amount of water removed is small compared to the amount of osmolyte, allowing for recirculation.

The authors have found in previous studies that relatively small increases in the percent of water content can cause significant swelling in the brain. These experiments showed that the osmotic therapy device removed enough water to prevent brain swelling and was capable of removing even more. They also found that removing the excess water quickly enough in brain swelling improved neurological outcomes. This is a key hope for the spinal cord device as well.

The team plans to continue improving the device through longer experiments on rats before eventually moving on to human trials.

Together with biomedical sciences professor Byron Ford, Rodgers is developing a similar device that drains fluid directly from the brain and introduces neuregulin-1, a molecule produced naturally by the body to regulate communication between cells in the brain and heart and promote their growth, to improve treatment and reduce damage of severe strokes.

###

The paper, “Implantable osmotic transport device can reduce edema after severe contusion spinal cord injury,” is co-authored by Christopher Hale, Jennifer Yonan, Ramsey Batarseh, Roman Chaar, Carrie R. Jonak, and Shaokui Ge, also at UC Riverside.

Media Contact
Holly Ober
[email protected]

Original Source

https://news.ucr.edu/articles/2020/08/12/improving-treatment-spinal-cord-injuries

Related Journal Article

http://dx.doi.org/10.3389/fbioe.2020.00806

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyDisabled PersonsMedicine/HealthneurobiologyRehabilitation/Prosthetics/Plastic SurgeryTechnology/Engineering/Computer ScienceTrauma/Injury
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Jgk1 Phage: A New Antimicrobial Breakthrough

Exploring Jgk1 Phage: A New Antimicrobial Breakthrough

August 5, 2025
blank

Bacterial Diversity Across Developmental Stages of Anopheles subpictus

August 5, 2025

Nigella sativa Nanoparticles: Fighting Bacteria, Oxidants, and Mosquitoes

August 5, 2025

Decoding Black Garlic’s Chemistry and Health Benefits

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    72 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Serum Bile Acids Linked to Precocious Puberty Diagnosis

Adulsa Leaf Carbon Dots for Colorimetric Ag⁺ Detection

Hundreds of Satellite Systems Discovered Orbiting Dwarf Galaxies in New Survey

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.