• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Improving survival in pancreatic cancer

Bioengineer by Bioengineer
April 22, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Suppressing a gene regulator could reduce pancreatic cancer resistance to vital chemotherapeutic treatment.

IMAGE

Credit: Yutaka Kondo

Nagoya University researchers and colleagues in Japan have uncovered a molecular pathway that enhances chemotherapy resistance in some pancreatic cancer patients. Targeting an RNA to interrupt its activity could improve patient response to therapy and increase their overall survival.

“Pancreatic cancer is one of the most aggressive human malignancies, with an overall median survival that is less than five months,” says cancer biologist Yutaka Kondo of Nagoya University Graduate School of Medicine. “This poor prognosis is partially due to a lack of potent therapeutic strategies against pancreatic cancer, so more effective treatments are urgently needed.”

Kondo and his colleagues focused their attention on a long noncoding RNA (lncRNA) called taurine upregulating gene 1 (TUG1). lncRNAs are gene regulators, several of which have recently been identified for helping some cancers resist chemotherapy. TUG1 is already known for being overexpressed in gastrointestinal cancers that have poor prognosis and are resistant to chemotherapy.

The researchers found TUG1 was overexpressed in a group of patients with pancreatic ductal adenocarcinoma. These patients were resistant to the standard chemotherapy treatment 5-fluorouracil (5-FU), and died much sooner compared to cancer patients with low TUG1 expression levels.

Further laboratory tests showed TUG1 counteracts a specific microRNA, leading to increased activity of an enzyme, called dihydropyrimidine dehydrogenase, which breaks down 5-FU into a compound that can’t kill cancer cells.

Kondo and his team found they could suppress TUG1 during 5-FU treatment of mice with pancreatic cancer by using antisense oligonucleotides attached to a specially designed cancer-targeting drug delivery system. Antisense oligonucleotides interfere with gene expression.

“Our data provides evidence that our therapeutic approach against pancreatic cancer could be promising,” says Kondo.

The team now plans to conduct further laboratory investigations to test the effectiveness of their therapeutic strategy.

###

Their study, “Cancer-specific targeting of taurine upregulated gene 1 enhances the effects of chemotherapy in pancreatic cancer,” was published online in the journal Cancer Research on March 1, 2021 at DOI: 10.1158/0008-5472.CAN-20-3021.

Authors:

Yoshihiko Tasaki, Miho Suzuki, Keisuke Katsushima, Keiko Shinjo, Kenta Iijima, Yoshiteru Murofushi, Aya Naiki Ito, Kazuki Hayashi, Chenjie Qiu, Akiko Takahashi, Yoko Tanaka, Tokuichi Kawaguchi, Minoru Sugawara, Tomoya Kataoka, Mitsuru Naito, Kanjiro Miyata, Kazunori Kataoka, Tetsuo Noda, Wentao Gao, Hiromi Kataoka, Satoru Takahashi, Kazunori Kimura, and Yutaka Kondo

About Nagoya University, Japan

Nagoya University has a history of about 150 years, with its roots in a temporary medical school and hospital established in 1871, and was formally instituted as the last Imperial University of Japan in 1939. Although modest in size compared to the largest universities in Japan, Nagoya University has been pursuing excellence since its founding. Six of the 18 Japanese Nobel Prize-winners since 2000 did all or part of their Nobel Prize-winning work at Nagoya University: four in Physics – Toshihide Maskawa and Makoto Kobayashi in 2008, and Isamu Akasaki and Hiroshi Amano in 2014; and two in Chemistry – Ryoji Noyori in 2001 and Osamu Shimomura in 2008. In mathematics, Shigefumi Mori did his Fields Medal-winning work at the University. A number of other important discoveries have also been made at the University, including the Okazaki DNA Fragments by Reiji and Tsuneko Okazaki in the 1960s; and depletion forces by Sho Asakura and Fumio Oosawa in 1954.

Website: http://en.nagoya-u.ac.jp/

Media Contact
Yutaka Kondo
[email protected]

Original Source

https://en.nagoya-u.ac.jp/research/activities/news/index.html

Related Journal Article

http://dx.doi.org/10.1158/0008-5472.CAN-20-3021

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologycancerCell BiologyGastroenterologyGene TherapyGeneticsMedicine/HealthPharmaceutical Chemistry
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Achieving Weight Goals Within Four Years: A Scientific Breakthrough

August 27, 2025
Exploring Fungal Diversity via Metabarcoding Techniques

Exploring Fungal Diversity via Metabarcoding Techniques

August 27, 2025

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

August 27, 2025

Immune Cells in the Brain: Crucial Architects of Adolescent Neural Wiring

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

HIV Patients on Antiretrovirals: Metabolic Syndrome in Tanzania

Achieving Weight Goals Within Four Years: A Scientific Breakthrough

Quantum Capacitance of Transition Metal Alloys Analyzed

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.