• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, January 18, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Improving solar cells’ back-contact is goal of $3.5 million DOE project

Bioengineer by Bioengineer
January 10, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Before cadmium telluride solar cells can corner the market, they require further improvement in their performance

IMAGE

Credit: Jim Sites/Colorado State University


Fifty years ago, solar power was rare, expensive and specialized – barely a blip on the energy landscape. Today, rooftop and commercial solar markets are exploding, generating 2.5% of all electricity in the U.S. and fueled by the urgency of climate change.

For many years, Colorado State University physicists and engineers have worked to push the boundaries of solar technology, focusing on a cutting-edge photovoltaic material called cadmium telluride that’s currently in about 5% of the world’s solar panels. In contrast to traditional crystalline silicon, cadmium telluride solar cells are faster and take less energy to make, and today boast a record light-to-energy efficiency of 22%, held by First Solar, a longtime collaborator with CSU.

But before cadmium telluride solar cells can corner the market, they require further improvement in their performance. The U.S. Department of Energy has funded a team of CSU and other researchers to focus on a classic bottleneck that has stymied the widespread introduction of cadmium telluride as a solar material.

Led by Jim Sites, professor in the Department of Physics, along with longtime collaborator professor W.S. Sampath in the Department of Mechanical Engineering, they are tackling efficiency problems associated with one specific layer of the cadmium-telluride solar cell – the last layer known as the back contact.

Cadmium telluride solar cells consist of several very thin – only several microns thick – layers of different materials that convert light to energy by working together at their interfaces. Over the years, the CSU team, in collaboration with the CSU-based Next Generation Photovoltaic Center, has made major strides in improving various layers of the cell, including the light-absorbing layers and the buffer layer, made of magnesium zinc oxide.

The back contact is the layer furthest from the light source, and scientists have been unable to blend this layer seamlessly into the cell, due to the structures on either side not matching up.

“This is clearly the bottleneck, and where the attention needs to go,” Sites says. He and Sampath are collaborating on the DOE project with experts from University of Toledo, First Solar, National Renewable Energy Laboratory, and University of Illinois at Chicago.

The team’s objective is to develop a high-performance, manufacturable back contact for cadmium telluride solar cells that could be easily transferrable into current manufacturing protocols. The work will build on the different strengths of each partner, bringing together experts in making, manufacturing and characterizing solar cells. They think they can achieve a 25% light-to-energy efficiency with an improved back contact architecture.

Sampath remarked that over his career, solar power has evolved from an obscure, expensive energy source to one whose cost structure has dipped below coal-powered sources.

“When we were originally starting out, there were papers written that said you couldn’t produce the amount of energy that went into making the panel itself, ” said Sampath, who started researching photovoltaic energy in the 1980s. Now, solar generates 500 gigawatts of power across the U.S., 25 gigawatts of which are produced from cadmium telluride panels.

###

Media Contact
Anne Manning
[email protected]
970-491-7099

Original Source

https://natsci.source.colostate.edu/improving-solar-cells-back-contact-is-goal-of-3-5-million-doe-project/

Tags: Chemistry/Physics/Materials SciencesClimate ChangeMaterialsMechanical EngineeringMolecular PhysicsOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026
blank

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palliative Care Integration for Women with HIV and Cancer

Casein-Manganese Ferrite Nanostructures Extract Carotenoids

Assessing Map Completeness in Robotic Exploration

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.