• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Immune-boosting compound makes immunotherapy effective against pancreatic cancer

Bioengineer by Bioengineer
July 3, 2019
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Chemical compound extends survival by months, in mice

Pancreatic cancer is especially challenging to treat – only eight percent of patients are still alive five years after diagnosis. Chemotherapy and radiation therapy are of limited benefit, and even immunotherapy – which revolutionized treatment for other kinds of cancer by activating the body’s immune system to attack cancer cells – has been largely ineffective because pancreatic tumors have ways to dampen the immune assault.

Now, researchers at Washington University School of Medicine in St. Louis and Rush University in Chicago have found a chemical compound that promotes a vigorous immune assault against the deadly cancer. Alone, the compound reduces pancreatic tumor growth and metastases in mice. But when combined with immunotherapy, the compound significantly shrank tumors and dramatically improved survival in the animals.

The findings, published July 3 in Science Translational Medicine, suggest that the immune-boosting compound could potentially make resistant pancreatic cancers susceptible to immunotherapy and improve treatment options for people with the devastating disease.

“Pancreatic cancer is a highly lethal disease, and we are in desperate need of new therapeutic approaches,” said co-senior author David DeNardo, PhD, an associate professor of medicine and of pathology and immunology at Washington University School of Medicine. “In animal studies, this small molecule led to very marked improvements and was even curative in some cases. We are hopeful that this approach could help pancreatic cancer patients.”

On paper, immunotherapies for pancreatic cancer seem like a good idea. The technique works by releasing a brake on specialized immune cells called T cells so they can attack the cancer. In the past, researchers working in the lab found they could release the brake and prod T cells into killing pancreatic cancer cells. But when doctors tried to treat people with pancreatic cancer using immunotherapies, fewer than five percent of patients improved.

This failure of immunotherapy in pancreatic cancer has puzzled scientists. But T cells aren’t the only player in the immune assault on cancer. Myeloid cells, another kind of immune cell found in and around tumors, can either tamp down or ramp up the immune response. They tilt the playing field by releasing immune molecules that affect how many T cells are recruited to the tumor, and whether the T cells show up at the tumors activated and ready to kill, or suppressed and inclined to ignore the tumor cells. In pancreatic tumors, myeloid cells typically suppress other immune cells, undermining the effects of immunotherapy.

DeNardo, co-senior author Vineet Gupta, PhD, of Rush University, and colleagues realized that releasing the brake on T cells might not be enough to treat pancreatic cancer. Unleashing the power of immunotherapy might require also shifting the balance of myeloid cells toward those that activate T cells to attack.

The researchers identified a compound, called ADH-503, that interferes with the migration of myeloid cells. Normally, pancreatic tumors are teeming with myeloid cells that suppress the immune response. When the researchers gave the compound to mice with pancreatic cancer, the number of myeloid cells in and near the tumors dropped, and the remaining myeloid cells were of the kind that promoted, rather than suppressed, immune responses. This environment translated into greater numbers of cancer-killing T cells in the tumor, significantly slower tumor growth and longer survival.

Then, the researchers – including first author Roheena Panni, MD, resident in general surgery at Washington University and Barnes-Jewish Hospital, and co-author William Hawkins, MD, the Neidorff Family and Robert C. Packman Professor of Surgery at Washington University School of Medicine – investigated whether creating this same environment could make pancreatic tumors susceptible to standard immunotherapy. First, they treated mice with a so-called PD-1 inhibitor, a standard immunotherapy used to treat other kinds of cancer. Unsurprisingly, they saw no effect. But when the researchers gave the mice the immunotherapy in conjunction with ADH-503, the tumors shrank and the mice survived significantly longer. In some experiments, all the tumors disappeared within a month of treatment, and all the mice survived for four months, when the researchers stopped monitoring them. In comparison, all the untreated mice died within six weeks.

Gupta noted that while pancreatic cancer is the third leading cause of cancer-related death in the United States, only about three percent of clinical trials for cancer immunotherapies target pancreatic cancer.

“Unlocking the promise of immunotherapies for pancreatic cancer requires a new approach,” Gupta said. “We believe these data demonstrate that targeting myeloid cells can help overcome resistance to immunotherapies.”

The strategy of boosting antitumor immune activity by shifting the balance of myeloid cells improved the effectiveness of other pancreatic cancer therapies as well, the researchers said. Mice treated with chemotherapy or radiation therapy both fared significantly better when ADH-503 was added to the regimen.

“You can’t make a one-to-one translation between animal studies and people, but this is very encouraging,” DeNardo said. “More study is needed to understand if the compound is safe and effective in people, which is why this compound is going into phase I safety studies in people later this year at Washington University and other sites.”

###

Media Contact
Diane Duke Williams
[email protected]

Tags: cancerImmunology/Allergies/AsthmaMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring NK Cell Therapies for Solid Tumors

October 5, 2025

tRF-34-86J8WPMN1E8Y2Q Fuels Gastric Cancer Progression

October 4, 2025

Gut Microbiome and Hormones in Postmenopausal Breast Cancer

October 4, 2025

α-L-Fucosidase Isoenzymes: New Glioma Prognostic Markers

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Empowering Older Adults: Shared Decision-Making in Nursing

Whole Genome Analysis Uncovers Variations in Goat Pigmentation

Boosting Malonylation Site Detection with AlphaFold2

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.