• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 24, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Immediate detection of airborne viruses with a disposable kit!

Bioengineer by Bioengineer
December 10, 2020
in Biology, Medicine/Health, Technology/Engineering/Computer Science
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Development of an integrated sampling/monitoring platform for airborne viruses. Rapid and selective diagnosis of airborne viruses using disposable sampling/monitoring kits

IMAGE

Credit: Korea Institute of Science and Technology(KIST)

Researchers in South Korea have developed a technology that enables immediate detection of specific airborne viruses in the field. The Korea Institute of Science and Technology (KIST)
announced that the collaborative research team led by Dr. Joonseok Lee from Molecular Recognition Research Center, Professor Min-Gon Kim from the Department of Chemistry, Gwangju Institute of Science and Technology (GIST), and Professor Chan-Seon Song from the Department of Veterinary Medicine, Konkuk University, developed a detection platform that can simultaneously sample and monitor airborne viruses in the field.

Testing the biological hazards such as various bacteria, fungi, and viruses present in the air generally requires collecting the sample air from the field and conducting a separate analysis on the sample in the laboratory. This analysis process may take a few hours to even several days. Although the existing techniques that support on-site analysis without having to transfer the sample back to the laboratory enabled monitoring the concentration of bacteria or fungi, they displayed limitations in distinguishing the specific microorganism existence or being used without further cleaning.

The KIST-GIST collaborative research team developed an integrated sampling/monitoring platform that uses a disposable kit to easily collect and detect airborne viruses on-site. The disposable virus sampling/monitoring kit developed by the team is similar to the pregnancy test kit, and enables completion of both sampling and diagnosing on airborne viruses within 50 minutes on-site (10 to 30 minutes of sampling and 20 minutes of diagnosis) without requiring a separate cleaning or separation process.

The developed monitoring platform collects and concentrates the airborne virus on a porous glass fiber pad, and then the virus is flowed to the detection zone by a capillary force. The flowed virus is combined with the near-infrared (NIR) emission of synthesized nanoprobes conjugated with antibodies that react only to specific viruses in order to selectively detect the desired viruses even in an environment having simultaneous existence of several types of viruses. In addition, the platform supports injection of more than four kits at once to enable monitoring of multiple virus types at once.

The airborne viruses are affected by external factors such as the indoor space area size, the use of air conditioning system, and temperature and humidity. Thus, the collaborative research team established an artificial aerosolization chamber system that can regulate external factors to verify the developed platform and conducted experiments under certain conditions. The team was able to sample influenza viruses spread out in a large space, concentrate the virus to about more than one million times concentration in a porous pad, and recover the viruses attached to the pad surface with an efficiency of about 82% through surface pretreatment and test solution optimization to finally detect the virus in the detection zone.

“This platform supports an immediate analysis on the field collected sample, and it can be implemented as an indoor air pollution monitoring system for diagnosing airborne biological hazards such as the COVID-19 virus,” Dr. Joonseok Lee at KIST said.

###

This research was supported by the Samsung Research Funding & Incubation Center of Samsung Electronics. The research results have been published on the latest edition of ACS Sensors (IF: 7.333, JCR 2.907%), and the paper has been selected to be published as the cover paper.

Media Contact
Do-Hyun Kim
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acssensors.0c01531

Immediate detection of airborne viruses with a disposable kit!

Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

No more needles for diagnostic tests?

January 22, 2021
IMAGE

Shift in caribou movements may be tied to human activity

January 22, 2021

Rediscovery of the ‘extinct’ Pinatubo volcano mouse

January 22, 2021

Meta-Apo supports cheaper, quicker microbiome functional assessment

January 22, 2021
Next Post
IMAGE

Increased social media use linked to developing depression, research finds

IMAGE

Cataloging nature’s hidden arsenal: Viruses that infect bacteria

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    65 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceBiologyClimate ChangePublic HealthMaterialsInfectious/Emerging DiseasesMedicine/HealthcancerGeneticsCell BiologyEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Regulating the ribosomal RNA production line
  • A professor from RUDN University developed new liquid crystals
  • New technique builds super-hard metals from nanoparticles
  • No more needles for diagnostic tests?
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In