• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, January 25, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Image analysis technique provides better understanding of heart cell defects

Bioengineer by Bioengineer
May 19, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new algorithm combines gradient methods with fast Fourier transforms to quantify the organization of cardiac myofibrils

IMAGE

Credit: Brett N. Napiwocki

WASHINGTON, May 19, 2020 — Heart disease is the leading cause of death in the United States and other industrialized nations, and many patients face limited treatment options. Fortunately, stem cell biology has enabled researchers to produce large numbers of cardiomyocytes, the cells that make up the heart or cardiac muscle and have the potential to be used in advanced drug screens and cell-based therapies.

One of the pitfalls of these stem cell-generated cardiomyocytes is that they do not represent adult human cardiomyocytes but remain immature without further intervention. Additionally, current image analysis techniques do not allow researchers to analyze heterogeneous, multidirectional, striated myofibrils typical of immature cells to determine when new interventions are coaxing the cells to organize.

In the Journal of Applied Physics, from AIP Publishing, researchers showcase an algorithm that combines gradient methods with fast Fourier transforms, the scanning gradient Fourier transform or SGFT technique, to quantify myofibril structures in heart cells with considerable accuracy. Myofibrils are the elongated contractile unit of a muscle cell.

“If you look at adult human cardiac tissue, everything is not in perfect alignment. Everything is not stacked nicely and neatly like a bookshelf,” said Wendy Crone, an author of the paper. “The structures are more complicated. We wanted to be able to quantify the organization.”

This level of analysis, combined with new emerging studies of the effects of cell mutation, has the potential to produce new insights regarding the mechanisms underlying the generation of myofibrils and various cardiomyopathies, which make it harder for the heart muscle to pump blood to the rest of the body.

“There is myofibril disarray in certain diseases of the heart,” said Crone. “With our technique, we can quantify the disarray, which provides a better understanding of the severity of disease in heart cells.”

The heterogeneous, striated patterning that this new method can detect and quantify occurs in countless other instances in biology and elsewhere. For instance, the SGFT technique clearly detects the distribution of collagen organization and orientation in breast tissue biopsies, which is significant since breast tissue with cancer has more organized collagen structures. As prior studies have shown, the morphology of collagen fibers in breast cancer tissue is a strong prognostic indicator of the malignancy of the tumor.

The SGFT technique could also potentially be used to quantify striated patterns in early stage neurons derived from stems cells.

“Our code can quantify the organization of neural rosettes, too,” said Crone.

###

The article, “The scanning gradient Fourier transform (SGFT) method for assessing sarcomere organization and alignment,” is authored by Wendy C. Crone, Max R. Salick, Brett N. Napiwocki, Rachel A. Kruepke, Gavin T. Knight and Randolph Ashton. The article will appear in the Journal of Applied Physics on May 12, 2020 (DOI: 10.1063/1.5129347). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5129347.

ABOUT THE JOURNAL

The Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results in all areas of applied physics. See https://aip.scitation.org/journal/jap.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/1.5129347

Tags: BiologyBiomechanics/BiophysicsBiotechnologyCardiologyCell BiologyChemistry/Physics/Materials SciencesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Route to Strychnos Alkaloids via Thiophene Cycloadditions

January 23, 2026
Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

January 20, 2026

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    156 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    149 shares
    Share 60 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    80 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    62 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring CDPK Genes in Liriodendron Chinense Under Stress

Robust Control Enhances LEO Satellite Orbit Maintenance

Quadrotor Control: Advancing Air-Ground Cooperation Framework

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.